- UID
- 223346
- 帖子
- 483
- 主题
- 49
- 注册时间
- 2011-7-11
- 最后登录
- 2013-9-12
|
6#
发表于 2013-4-28 09:51
| 只看该作者
1) Yes, in reality, you are going to see both the interest rate and the risk premium change, however, for long term analysis, it is not unreasonable to assume that the RP stays relatively constant over the long term. When you feel that the market is overvalued as a whole, for example, you are really saying that the risk premium is too small for the true risk of the market, and that you are expecting the risk premium to mean revert.
But, when you’re doing all these calculations, and you want to know what the effect of an interest rate change is on prices, it is ok to go ahead and hold the RP constant. Just, when the crapola hits the fan, you have to realize that in all probability, you’re going to be estimating only a lower bound or an upper bound by holding the RP constant.
Another point is that you get the same duration equation for risk premia changes. So if the interest rate stays constant, but the risk premium increases by 1%, you’re going to get a huge change in the index price. That’s interesting, because a 1% increase in the risk premium would supposedly shave 40-50% off of the S&P 500 valuation. If you believe the math, what it really tells you is that all the changes in the long term risk premium are actually pretty tiny.
There’s also an issue with the fact that some companies distribute “dividends” through share repurchases, which are qualitatively the same thing. Probably we would want to adjust the model to assume that (adjusted dividend yield) = (div yield) - (net change in shares outstanding). So the effect would not necessarily be quite so strong, but it would be a pain in the butt to calculate.
2) dp/dk is the change in price (dp) per change in interest rate. Duration is the percentage change in price (dp/P) per change in the interest rate. So that’s where the divide-by-P part comes in. It’s not super obvioius until you already know the answer. |
|