- UID
- 223244
- 帖子
- 240
- 主题
- 128
- 注册时间
- 2011-7-11
- 最后登录
- 2013-10-18
|
39#
发表于 2012-4-2 17:41
| 只看该作者
A putable bond with a 6.4% annual coupon will mature in two years at par value. The current one-year spot rate is 7.6%. For the second year, the yield volatility model forecasts that the one-year rate will be either 6.8% or 7.6%. The bond is putable in one year at 99. Using a binomial interest rate tree, what is the current price?
The tree will have three nodal periods: 0, 1, and 2. The goal is to find the value at node 0. We know the value at all nodes in nodal period 2: V2=100. In nodal period 1, there will be two possible prices:
Vi,U = [(100 + 6.4) / 1.076 + (100+6.4) / 1.076] / 2 = 98.885
Vi,L = [(100 + 6.4) / 1.068 + (100 + 6.4) / 1.068] / 2 = 99.625.
Since 98.885 is less than the put price, Vi,U = 99
V0 = [(99 + 6.4) / 1.076) + (99.625 + 6.4) / 1.076)] / 2 = 98.246. |
|