Correct answer is A)fficeffice" />
Key Rate Durations |
Issue |
Value ($1,000's) |
weight |
3 mo |
2 yr |
5 yr |
10 yr |
15 yr |
20 yr |
25 yr |
30 yr |
Effective Duration |
Bond 1 |
100 |
0.10 |
0.03 |
0.14 |
0.49 |
1.35 |
1.71 |
1.59 |
1.47 |
4.62 |
11.4 |
Bond 2 |
200 |
0.20 |
0.02 |
0.13 |
1.47 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
1.62 |
Bond 3 |
150 |
0.15 |
0.03 |
0.14 |
0.51 |
1.40 |
1.78 |
1.64 |
2.34 |
2.83 |
10.67 |
Bond 4 |
250 |
0.25 |
0.06 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.06 |
Bond 5 |
300 |
0.30 |
0.00 |
0.88 |
0.00 |
0.00 |
1.83 |
0.00 |
0.00 |
0.00 |
2.71 |
Total Portfolio |
|
1.00 |
0.0265 |
0.325 |
0.4195 |
0.345 |
0.987 |
0.405 |
0.498 |
0.8865 |
3.8925 |
Change in Portfolio Value
Change from 3-month key rate increase: |
(20 bp)(0.0265) |
= 0.0053% decrease |
Change from 5-year key rate increase: |
(90 bp)(0.4195) |
= 0.3776% decrease |
Change from 30-year key rate decrease: |
(150 bp)(0.8865) |
= 1.3298% increase |
Net change |
|
0.9469% increase |
This means that the portfolio value after the yield curve shift is:
1,000,000(1 + 0.009469) = $1,009,469.00
|