标题: Reading 66: Introduction to the Measurement of Interest Rate [打印本页]
作者: honeycfa 时间: 2010-4-25 19:57 标题: [2010]Session 16-Reading 66: Introduction to the Measurement of Interest Rate
LOS c: Describe positive convexity, negative convexity, and their relation to bond price and yield.
Negative convexity for a callable bond is most likely to be important when the:
|
B) |
market interest rate rises above the bond's coupon rate. | |
C) |
price of the bond approaches the call price. | |
Negative convexity illustrates how the relationship between the price of a bond and market yields changes as the bond price rises and approaches the call price. The convex curve that we generally see for non-callable bonds bends backward to become concave (i.e., exhibit negative convexity) as the bond approaches the call price.
作者: honeycfa 时间: 2010-4-25 19:57
Jayce Arnold, a CFA candidate, is studying how the market yield environment affects bond prices. She considers a $1,000 face value, option-free bond issued at par. Which of the following statements about the bond’s dollar price behavior is most likely accurate when yields rise and fall by 200 basis points, respectively? Price will:
A) |
decrease by $124, price will increase by $149. | |
B) |
increase by $149, price will decrease by $124. | |
C) |
decrease by $149, price will increase by $124. | |
As yields increase, bond prices fall, the price curve gets flatter, and changes in yield have a smaller effect on bond prices. As yields decrease, bond prices rise, the price curve gets steeper, and changes in yield have a larger effect on bond prices. Thus, the price increase when interest rates decline must be greater than the price decrease when interest rates rise (for the same basis point change). Remember that this applies to percentage changes as well.
作者: honeycfa 时间: 2010-4-25 19:57
How does the price-yield relationship for a callable bond compare to the same relationship for an option-free bond? The price-yield relationship is:
A) |
concave for the callable bond and convex for an option-free bond. | |
B) |
the same for both bond types. | |
C) |
concave for low yields for the callable bond and always convex for the option-free bond. | |
Since the issuer of a callable bond has an incentive to call the bond when interest rates are very low in order to get cheaper financing, this puts an upper limit on the bond price for low interest rates and thus introduces the concave relationship between yields and prices.
作者: honeycfa 时间: 2010-4-25 19:58
Which of the following is most accurate about a bond with positive convexity?
A) |
Price increases when yields drop are greater than price decreases when yields rise by the same amount. | |
B) |
Positive changes in yield lead to positive changes in price. | |
C) |
Price increases and decreases at a faster rate than the change in yield. | |
A convex price/yield graph has a larger increase in price as yield decreases than the decrease in price when yields increase. This comes from the definition of a convex graph.
作者: honeycfa 时间: 2010-4-25 19:58
Which of the following is most accurate about a bond with positive convexity?
A) |
Price increases when yields drop are greater than price decreases when yields rise by the same amount. | |
B) |
Positive changes in yield lead to positive changes in price. | |
C) |
Price increases and decreases at a faster rate than the change in yield. | |
A convex price/yield graph has a larger increase in price as yield decreases than the decrease in price when yields increase. This comes from the definition of a convex graph.
作者: honeycfa 时间: 2010-4-25 19:58
Which of the following bonds bears the greatest price impact if its yield declines by one percent? A bond with:
A) |
30-year maturity and selling at 100. | |
B) |
30-year maturity and selling at 70. | |
C) |
10-year maturity and selling at 70. | |
There are three features that determine the magnitude of duration:
(1) The lower the coupon, the greater the bond price volatility.
(2) The longer the term to maturity, the greater the price volatility.
(3) The lower the initial yield, the greater the price volatility.
The bond with the 30-year maturity will have a greater price impact than the 10-year maturity. The bond selling at the greatest discount will have a large price impact, a discount means that the coupon payments are low or the initial yield is low. So, the bond with the 30-year maturity and selling at 70 will have the greatest price volatility.
作者: honeycfa 时间: 2010-4-25 19:59
Non-callable bond prices go up faster than they go down. This is referred to as:
When bond prices go up faster than they go down, it is called positive convexity.
作者: honeycfa 时间: 2010-4-25 19:59
Non-callable bond prices go up faster than they go down. This is referred to as:
When bond prices go up faster than they go down, it is called positive convexity.
作者: honeycfa 时间: 2010-4-25 19:59
Can a fixed income security have a negative convexity?
|
B) |
Only when the price/yield curve is linear. | |
|
Yes, fixed income securities can have a negative security. The only type of fixed income security with a negative convexity will be callable bonds.
作者: honeycfa 时间: 2010-4-25 19:59
Negative convexity is most likely to be observed in:
All noncallable bonds exhibit the trait of being positively convex and callable bonds have a negative convexity. Callable bonds have a negative convexity because once the yield falls below a certain point, as yields fall, prices will rise at a decreasing rate, thus giving the curve a negative convex shape.
作者: honeycfa 时间: 2010-4-25 20:00
Which of the following statements best describes the concept of negative convexity in bond prices? As interest rates:
A) |
fall, the bond's price increases at a decreasing rate. | |
B) |
fall, the bond's price increases at an increasing rate. | |
C) |
rise, the bond's price decreases at a decreasing rate. | |
Negative convexity occurs with bonds that have prepayment/call features. As interest rates fall, the borrower/issuer is more likely to repay/call the bond, which causes the bond’s price to approach a maximum. As such, the bond’s price increases at a decreasing rate as interest rates decrease.
作者: honeycfa 时间: 2010-4-25 20:00
Positive convexity means that:
A) |
the graph of a callable bond flattens out as the market value approaches the call price. | |
B) |
as interest rates change, bond prices will increase at an increasing rate and decrease at a decreasing rate. | |
C) |
the price of a fixed-coupon bond is inversely related to changes in interest rates. | |
Positive convexity refers to the principle that for a given change in market yields, bond price sensitivity is lowest when market yields are high and highest when market yields are low.
Although the statements that begin, the graph of a callable bond . . . and the price of a fixed-coupon bond . . . are true, they are not the best choices to describe positive convexity.
作者: honeycfa 时间: 2010-4-25 20:00
Consider two bonds, A and B. Both bonds are presently selling at par. Each pays interest of $120 annually. Bond A will mature in 5 years while bond B will mature in 6 years. If the yields to maturity on the two bonds change from 12% to 10%, both bonds will:
A) |
increase in value, but bond A will increase more than bond B. | |
B) |
increase in value, but bond B will increase more than bond A. | |
C) |
decrease in value, but bond B will decrease more than bond A. | |
There are three features that determine the magnitude of the bond price volatility:
(1) The lower the coupon, the greater the bond price volatility.
(2) The longer the term to maturity, the greater the price volatility.
(3) The lower the initial yield, the greater the price volatility.
Since both of these bonds are the same with the exception of the term to maturity, the bond with the longer term to maturity will have a greater price volatility. Since bond value has an inverse relationship with interest rates, when interest rates decrease bond value increases.
作者: honeycfa 时间: 2010-4-25 20:00
Which of the following bonds may have negative convexity?
A) |
Both of these choices are correct. | |
B) |
Mortgage backed securities. | |
|
Negative convexity is the idea that as interest rates decrease they get to a certain point where the value of certain bonds (bonds with negative convexity) will start to increase in value at a decreasing rate.
Interest rate risk is the risk of having to reinvest at rates that are lower than what an investor is currently receiving.
Mortgage backed securities (MBS) may have negative convexity because when interest rates fall mortgage owners will refinance for lower rates, thus prepaying the outstanding principle and increasing the interest rate risk that investors of MBS may incur.
Callable bonds are similar to MBS because of the possibility that the principle is being returned to the investor sooner than expected if the bond is called causing a higher level of interest rate risk.
作者: honeycfa 时间: 2010-4-25 20:01
If a put feature expires on a bond so that it becomes option-free, then the curve depicting the price and yield relationship of the bond will become:
When the option expires, the prices at the lower end of the curve will become lower. This will make the curve less convex.
作者: honeycfa 时间: 2010-4-25 20:01
Positive convexity in bond prices implies all but which of the following statements?
A) |
As yields increase, changes in yield have a smaller effect on bond prices. | |
B) |
The price volatility of non-callable bonds is inversely related to the level of market yields. | |
C) |
Bond prices approach a ceiling as interest rates fall. | |
The convexity of bond prices means that bond prices as a function of interest rates approach a floor as interest rates rise.
作者: honeycfa 时间: 2010-4-25 20:01
Convexity is important because:
A) |
it measures the volatility of non-callable bonds. | |
B) |
the slope of the price/yield curve is not linear. | |
C) |
the slope of the callable bond price/yield curve is backward bending at high interest rates. | |
Modified duration is a good approximation of price changes for an option-free bond only for relatively small changes in interest rates. As rate changes grow larger, the curvature of the bond price/yield relationship becomes more prevalent, meaning that a linear estimate of price changes will contain errors. The modified duration estimate is a linear estimate, as it assumes that the change is the same for each basis point change in required yield. The error in the estimate is due to the curvature of the actual price path. This is the degree of convexity. If we can generate a measure of this convexity, we can use this to improve our estimate of bond price changes.
欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) |
Powered by Discuz! 7.2 |