人们认识事物时往往先把被认识的对象进行分类,以便寻找其中同与不同的特征,因而分类学是人们认识世界的基础科学。在医学实践中也经常需要做分类的工作,如根据病人的一系列症状、体征和生化检查的结果,判断病人所患疾病的类型;或对一系列检查方法及其结果,将之划分成某几种方法适合用于甲类病的检查,另几种方法适合用于乙类病的检查;等等。统计学中常用的分类统计方法主要是聚类分析与判别分析。
聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类。判别分析则先根据已知类别的事物的性质,利用某种技术建立函数式,然后对未知类别的新事物进行判断以将之归入已知的类别中。聚类分析与判别分析有很大的不同,聚类分析事先并不知道对象类别的面貌,甚至连共有几个类别也不确定;判别分析事先已知对象的类别和类别数,它正是从这样的情形下总结出分类方法,用于对新对象的分类。
第一节 K-Means Cluster过程
10.1.1 主要功能
调用此过程可完成由用户指定类别数的大样本资料的逐步聚类分析。所谓逐步聚类分析就是先把被聚对象进行初始分类,然后逐步调整,得到最终分类。
10.1.2 实例操作
[例10.1]为研究儿童生长发育的分期,调查1253名1月至7岁儿童的身高(cm)、体重(kg)、胸围(cm)和坐高(cm)资料。资料作如下整理:先把1月至7岁划成19个月份段,分月份算出各指标的平均值,将第1月的各指标平均值与出生时的各指标平均值比较,求出月平均增长率(%),然后第2月起的各月份指标平均值均与前一月比较,亦求出月平均增长率(%),结果见下表。欲将儿童生长发育分为四期,故指定聚类的类别数为4,请通过聚类分析确定四个儿童生长发育期的起止区间。
月份 |
月平均增长率(%) | |||
身高 |
体重 |
胸围 |
坐高 | |
1 2 3 4 6 8 10 12 15 18 24 30 36 42 48 54 60 66 72 |
11.03 5.47 3.58 2.01 2.13 2.06 1.63 1.17 1.03 0.69 0.77 0.59 0.65 0.51 0.73 0.53 0.36 0.52 0.34 |
50.30 19.30 9.85 4.17 5.65 1.74 2.04 1.60 2.34 1.33 1.41 1.25 1.19 0.93 1.13 0.82 0.52 1.03 0.49 |
11.81 5.20 3.14 1.47 1.04 0.17 1.04 0.89 0.53 0.48 0.52 0.30 0.49 0.16 0.35 0.16 0.19 0.30 0.18 |
11.27 7.18 2.11 1.58 2.11 1.57 1.46 0.76 0.89 0.58 0.42 0.14 0.38 0.25 0.55 0.34 0.21 0.55 0.16 |
10.1.2.1 数据准备
激活数据管理窗口,定义变量名:虽然月份分组不作分析变量,但为了更直观地了解聚类结果,也将之输入数据库,其变量名为month;身高、体重、胸围和坐高的变量名分别为x1、x2、x3和x4,输入原始数额。
10.1.2.2 统计分析
激活Statistics菜单选Classify中的K-Means Cluster...项,弹出K-Means Cluster Analysis对话框(如图10.1示)。从对话框左侧的变量列表中选x1、x2、x3、x4,点击Ø钮使之进入Variables框;在Number of Clusters(即聚类分析的类别数)处输入需要聚合的组数,本例为4;在聚类方法上有两种:Iterate and classify指先定初始类别中心点,而后按K-means算法作叠代分类,Classify only指仅按初始类别中心点分类,本例选用前一方法。
图10.1 逐步聚类分析对话框
本例还要求对聚类结果进行方差分析,故点击Options...钮弹出K-Means Cluster:来Options对话框,在Statistics栏中选择ANOVA table项,点击Continue钮返回K-Means Cluster Analysis对话框,再点击OK钮即完成分析。
10.1.2.3 结果解释
在结果输出窗口中将看到如下统计数据:
首先系统根据用户的指定,按4类聚合确定初始聚类的各变量中心点,未经K-means算法叠代,其类别间距离并非最优;经叠代运算后类别间各变量中心值得到修正。
Initial Cluster Centers. Cluster X1 X2 X3 X4 1 11.0300 50.3000 11.8100 11.2700 2 5.4700 19.3000 5.2000 7.1800 3 3.5800 9.8500 3.1400 2.1100 4 .3400 .4900 .1800 .1600
Convergence achieved due to no or small distance change. The maximum distance by which any center has changed is .0000 Current iteration is 2
Minimum distance between initial centers is 10.5200
Iteration Change in Cluster Centers 1 2 3 4 1 .0000 .0000 2.46E+00 1.27E+00 2 .0000 .0000 .0000 .0000
Case listing of Cluster membership. Case ID Cluster Distance 1 1 .000 2 2 .000 3 3 2.457 4 4 3.219 5 3 2.457 6 4 1.530 7 4 1.346 8 4 .515 9 4 .915 10 4 .266 11 4 .281 12 4 .668 13 4 .467 14 4 .844 15 4 .415 16 4 .873 17 4 1.215 18 4 .619 19 4 1.269
Final Cluster Centers. Cluster X1 X2 X3 X4 1 11.0300 50.3000 11.8100 11.2700 2 5.4700 19.3000 5.2000 7.1800 3 2.8550 7.7500 2.0900 2.1100 4 .9060 1.4660 .4820 .6560
|
之后对聚类结果的类别间距离进行方差分析,方差分析表明,类别间距离差异的概率值均<0.001,即聚类效果好。这样,原有19类(即原有的19个月份分组)聚合成4类,第一类含原有1类,第二类含原有1类,第三类含原有2类,第四类含原有15类。具体结果系统以变量名QCL_1存于原始数据库中。
Distances between Final Cluster Centers. Cluster 1 2 3 4 1 .0000 2 32.4397 .0000 3 45.3400 13.2521 .0000 4 52.2325 20.0924 6.9273 .0000
Analysis of Variance. Variable Cluster MS DF Error MS DF F Prob X1 37.5806 3 .369 15.0 101.7853 .000 X2 817.1164 3 1.354 15.0 603.2588 .000 X3 45.4089 3 .281 15.0 161.1145 .000 X4 46.0994 3 .235 15.0 195.4933 .000
Number of Cases in each Cluster. Cluster unweighted cases weighted cases 1 1.0 1.0 2 1.0 1.0 3 2.0 2.0 4 15.0 15.0 Missing 0 Valid cases 19.0 19.0
Variable Saved into Working File. QCL_1 (Cluster Number)
|
在原始数据库(图10.2)中,我们可清楚地看到聚类结果;参照专业知识,将儿童生长发育分期定为:
第一期,出生后至满月,增长率最高;
第二期,第2个月起至第3个月,增长率次之;
第三期,第3个月起至第8个月,增长率减缓;
第四期,第8个月后,增长率显著减缓。
图10.2 逐步聚类分析的分类结果
第二节 Hierarchical Cluster过程
10.2.1 主要功能
调用此过程可完成系统聚类分析。在系统聚类分析中,用户事先无法确定类别数,系统将所有例数均调入内存,且可执行不同的聚类算法。系统聚类分析有两种形式,一是对研究对象本身进行分类,称为Q型举类;另一是对研究对象的观察指标进行分类,称为R型聚类。
10.2.2.1 数据准备
激活数据管理窗口,定义变量名:钙、镁、铁、锰、铜和血红蛋白的变量名分别为x1、x2、x3、x4、x5、x6,之后输入原始数据。
10.2.2.2 统计分析
激活Statistics菜单选Classify中的Hierarchical Cluster...项,弹出Hierarchical Cluster Analysis对话框(图10.3)。从对话框左侧的变量列表中选x1、x2、x3、x4、x5、x6,点击Ø钮使之进入Variable(s)框;在Cluster处选择聚类类型,其中Cases表示观察对象聚类,Variables表示变量聚类,本例选择Variables。
图10.3 系统聚类分析对话框
点击Statistics...钮,弹出Hierarchical Cluster Analysis: Statistics对话框,选择Distance matrix,要求显示距离矩阵,点击Continue钮返回Hierarchical Cluster Analysis对话框(图10.4)。
图10.4 系统聚类方法选择对话框
本例要求系统输出聚类结果的树状关系图,故点击Plots...钮弹出Hierarchical Cluster Analysislots对话框,选择Dendrogram项,点击Continue钮返回Hierarchical Cluster Analysis对话框。
点击Method...钮弹出Hierarchical Cluster Analysis:Method对话框,系统提供7种聚类方法供用户选择:
Between-groups linkage:类间平均链锁法;
Within-groups linkage:类内平均链锁法;
Nearest neighbor:最近邻居法;
Furthest neighbor:最远邻居法;
Centroid clustering:重心法,应与欧氏距离平方法一起使用;
Median clustering:中间距离法,应与欧氏距离平方法一起使用;
Ward's method:离差平方和法,应与欧氏距离平方法一起使用。
本例选择类间平均链锁法(系统默认方法)。在选择距离测量技术上,系统提供8种形式供用户选择:
Euclidean distance:Euclidean距离,即两观察单位间的距离为其值差的平方和的平方根,该技术用于Q型聚类;
Squared Euclidean distance:Euclidean距离平方,即两观察单位间的距离为其值差的平方和,该技术用于Q型聚类;
Cosine:变量矢量的余弦,这是模型相似性的度量;
Pearson correlation:相关系数距离,适用于R型聚类;
Chebychev:Chebychev距离,即两观察单位间的距离为其任意变量的最大绝对差值,该技术用于Q型聚类;
Block:City-Block或Manhattan距离,即两观察单位间的距离为其值差的绝对值和,适用于Q型聚类;
Minkowski:距离是一个绝对幂的度量,即变量绝对值的第p次幂之和的平方根;p由用户指定
Customized:距离是一个绝对幂的度量,即变量绝对值的第p次幂之和的第r次根,p与r由用户指定。
本例选用Pearson correlation,点击Continue钮返回Hierarchical Cluster Analysis对话框,再点击OK钮即完成分析。
10.2.2.3 结果解释
在结果输出窗口中将看到如下统计数据:
共29例样本进入聚类分析,采用相关系数测量技术。先显示各变量间的相关系数,这对于后面选择典型变量是十分有用的。然后显示类间平均链锁法的合并进程,即第一步,X3与X6被合并,它们之间的相关系数最大,为0.863431;第二步,X1与X5合并,其间相关系数为0.624839;第三步,X2与第一步的合并项被合并,它们之间的相关系数为0.602099;第四步,它们与第二步的合并项再合并,其间相关系数为0.338335;第五步,与最后一个变量X4合并,这个相关系数最小,为-0.054485。
Data Information 29 unweighted cases accepted. 0 cases rejected because of missing value. Correlation measure used.
Correlation Similarity Coefficient Matrix Variable X1 X2 X3 X4 X5 X2 .5379 X3 .2995 .6349 X4 .1480 -.1212 -.2706 X5 .6248 .5820 .2653 .2939 X6 .0972 .5693 .8634 -.3226 .2481
Agglomeration Schedule using Average Linkage (Between Groups) Clusters Combined Stage Cluster 1st Appears Next Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage 1 3 6 .863431 0 0 3 2 1 5 .624839 0 0 4 3 2 3 .602099 0 1 4 4 1 2 .338335 2 3 5 5 1 4 -.054485 4 0 0
|
按类间平均链锁法,变量合并过程的冰柱图如下。先是X3与X6合并,接着X1与X5合并,然后X3、X6与X2合并,接着再与X1、X5合并,最后加上X4,六个变量全部合并。
Vertical Icicle Plot using Average Linkage (Between Groups)
(Down) Number of Clusters (Across) Case Label and number
下面用更为直观的聚类树状关系图表示,即X1、X2、X3、X5、X6先聚合后与X4再聚合。这表明,在评价儿童营养状态时,可在微量元素钙、镁、铁、铜和血红蛋白5个指标中选择一个,再加上微量元素锰即可,其效果与六个指标都用是基本等价的,但更经济更迅速。
Dendrogram using Average Linkage (Between Groups)
Rescaled Distance Cluster Combine
本例相关指数的均值依次为:
故选择镁(变量X2)典型指标。
第三节 Discriminant过程
10.3.1 主要功能
调用此过程可完成判别分析。判别分析目前在医学中得以广泛应用,不仅在于它所建立的判别式可用于临床辅助诊断,而且判别分析可分析出各种因素对特定结果的作用力大小,故亦可用于病因学或疾病预后的推测。
10.3.2 实例操作
[例10.3]为研究舒张期血压和血浆胆固醇对冠心病的作用,某医师测定了50-59岁冠心病人15例和正常人16例的舒张压和胆固醇指标,结果如下,试作判别分析,建立判别函数以便在临床中用于筛选冠心病人。
编号 |
冠心病人组 |
编号 |
正常人组 | ||
舒张压kPa x1 |
胆固醇mmol/L x2 |
舒张压kPa x1 |
胆固醇mmol/L x2 | ||
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
9.86 13.33 14.66 9.33 12.80 10.66 10.66 13.33 13.33 13.33 12.00 14.66 13.33 12.80 13.33 |
5.18 3.73 3.89 7.10 5.49 4.09 4.45 3.63 5.96 5.70 6.19 4.01 4.01 3.63 5.96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
10.66 12.53 13.33 9.33 10.66 10.66 9.33 10.66 10.66 10.66 10.40 9.33 10.66 10.66 11.20 9.33 |
2.07 4.45 3.06 3.94 4.45 4.92 3.68 2.77 3.21 5.02 3.94 4.92 2.69 2.43 3.42 3.63 |
Case Mis Actual Highest Probability 2nd Highest Discrim Number Val Sel Group Group P(D/G) P(G/D) Group P(G/D) Scores 1 1 ** 2 .4692 .6817 1 .3183 -.3187 2 1 1 .7060 .8188 2 .1812 .7347 3 1 1 .5490 .9737 2 .0263 1.7112 4 1 1 .8162 .8606 2 .1394 .8795 5 1 1 .4884 .9784 2 .0216 1.8049 6 1 ** 2 .7174 .8236 1 .1764 -.6805 7 1 ** 2 .5157 .7151 1 .2849 -.3924 8 1 1 .6475 .7918 2 .2082 .6547 9 1 1 .1594 .9953 2 .0047 2.5190 10 1 1 .2305 .9926 2 .0074 2.3110 11 1 1 .4577 .9806 2 .0194 1.8546 12 1 1 .4869 .9785 2 .0215 1.8072 13 1 1 .8782 .8798 2 .1202 .9588 14 1 1 .4264 .6473 2 .3527 .3166 15 1 1 .1594 .9953 2 .0047 2.5190 16 2 2 .2097 .9935 1 .0065 -2.2968 17 2 ** 1 .7554 .8389 2 .1611 .8005 18 2 ** 1 .3611 .5874 2 .4126 .1986 19 2 2 .5442 .9741 1 .0259 -1.6489 20 2 2 .5157 .7151 1 .2849 -.3924 21 2 2 .3048 .5275 1 .4725 -.0164 22 2 2 .4154 .9833 1 .0167 -1.8570 23 2 2 .4876 .9785 1 .0215 -1.7367 24 2 2 .7323 .9551 1 .0449 -1.3846 25 2 ** 1 .2945 .5156 2 .4844 .0637 26 2 2 .9393 .8963 1 .1037 -.9664 27 2 2 .8590 .8741 1 .1259 -.8648 28 2 2 .4483 .9812 1 .0188 -1.8007 29 2 2 .3339 .9879 1 .0121 -2.0087 30 2 2 .8647 .8759 1 .1241 -.8721 31 2 2 .3928 .9847 1 .0153 -1.8970
Symbols used in plots Symbol Group Label ------ ----- -------------------- 1 1 2 2
All-groups Stacked Histogram
Classification results - No. of Predicted Group Membership Actual Group Cases 1 2 -------------------- ------ -------- -------- Group 1 15 12 3 80.0% 20.0% Group 2 16 3 13 18.8% 81.3% Percent of "grouped" cases correctly classified: 80.65%
Classification processing summary 31 (Unweighted) cases were processed. 0 cases were excluded for missing or out-of-range group codes. 0 cases had at least one missing discriminating variable. 31 (Unweighted) cases were used for printed output. 31 cases were written into the working file.
|
系统将判别回代的结果以dis_1为变量名存入原始数据库中,如下图所示。用户可通过翻动原始数据库详细查阅。
图10.6 原始数据及判别结果
欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) | Powered by Discuz! 7.2 |