| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
(sales)t = α + β × (Trend)t + εtThe analyst then estimates the following model:
Where the Trend is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
Regression Statistics Multiple R 0.952640 R2 0.907523 Adjusted R2 0.898275
Standard Error 8.135514 Observations 12
1st order autocorrelation coefficient of the residuals: −0.075
ANOVA df SS Regression 1 6495.203 Residual 10 661.8659 Total 11 7157.069
Coefficients Standard Error Intercept 10.0015
5.0071
Trend 6.7400
0.6803
(natural logarithm of sales)t = α + β × (Trend)t + εt
Regression Statistics Multiple R 0.952028 R2 0.906357 Adjusted R2 0.896992 Standard Error 0.166686 Observations 12 1st order autocorrelation coefficient of the residuals: −0.348
ANOVA df SS Regression 1 2.6892 Residual 10 0.2778 Total 11 2.9670
Coefficients Standard Error Intercept 2.9803 0.1026 Trend 0.1371 0.0140
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
(Tea Imports)t = 3.8836 + 0.9288 × (Tea Imports)t − 1 + et
t-statistics (0.9328) (9.0025)
R2 = 0.7942
Adj. R2 = 0.7844
SE = 3.0892
N = 23
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
year one: 3.8836 + 0.9288 × 54 = 54.0388
year two: 3.8836 + 0.9288 × (54.0388) = 54.0748
year three: 3.8836 + 0.9288 × (54.0748) = 54.1083
(Study Session 3, LOS 13.a)
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Autoregressive Model
Gross Margin – McDowell Manufacturing
Quarterly Data: 1st Quarter 1985 to 4th Quarter 2000Regression Statistics
R-squared
0.767
Standard Error
0.049
Observations
64
Durbin-Watson
1.923 (not statistically significant)
Coefficient
Standard Error
t-statistic
Constant0.155
0.052
?????
Lag 10.240
0.031
?????
Lag 40.168
0.038
?????
Autocorrelation of Residuals
Lag
Autocorrelation
Standard Error
t-statistic
1
0.015
0.129
?????
2
-0.101
0.129
?????
3
-0.007
0.129
?????
4
0.095
0.129
?????
Partial List of Recent Observations
Quarter
Observation
4th Quarter 2002
0.250
1st Quarter 2003
0.260
2nd Quarter 2003
0.220
3rd Quarter 2003
0.200
4th Quarter 2003
0.240
This model is best described as:
Abbreviated Table of the Student’s t-distribution (One-Tailed Probabilities)
df
p = 0.10
p = 0.05
p = 0.025
p = 0.01
p = 0.005
50
1.299
1.676
2.009
2.403
2.678
60
1.296
1.671
2.000
2.390
2.660
70
1.294
1.667
1.994
2.381
2.648
| ||
| ||
|
| ||
| ||
|
first lag coefficient: t = (1-0.24)/0.031 = 24.52
second lag coefficient: t = (1-0.168)/0.038 =21.89
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Time Value
2003: I 31 2003: II 31 2004: I 33 2004: II 33 2005: I 36 2005: II 35 2006: I 32 2006: II 33
| ||
| ||
|
Time Value
2005: I 62 2005: II 62 2005: III 66 2005: IV 66 2006: I 72 2006: II 70 2006: III 64 2006: IV 66
| ||
| ||
|
Wireless Phone Minutes (WPM)t = bo + b1 WPMt-1 + ε t
ANOVADegrees of Freedom
Sum of Squares
Mean Square
Regression1
7,212.641
7,212.641
Error26
3,102.410
119.324
Total27
10,315.051
CoefficientsCoefficient
Standard Error of the Coefficient
Intercept-8.0237
2.9023
WPM t-11.0926
0.0673
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Lagged Autocorrelations of the Residuals of the First Differences in Absenteeism Rates
Lag
Autocorrelation
Standard Error
t-Statistic
1
−0.0738
0.1667
−0.44271
2
−0.1047
0.1667
−0.62807
3
−0.0252
0.1667
−0.15117
4
−0.0157
0.1667
−0.09418
5
−0.1262
0.1667
−0.75705
6
0.0768
0.1667
0.46071
7
0.0038
0.1667
0.02280
8
−0.0188
0.1667
−0.11278
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Regression Results for Maintenance Expense Changes
Model: DExpt = b0 + b1DExpt–1 + et
Coefficients
Standard Error
t-Statistic
p-value
Intercept
1.3304
0.0089
112.2849
< 0.0001
Lag-1
0.1817
0.0061
30.0125
< 0.0001
Lagged Residual Autocorrelations for Maintenance Expense Changes
Lag
Autocorrelation
t-Statistic
Lag
Autocorrelation
t-Statistic
1
−0.239
−2.397
−0.018
−0.182
−0.278
−2.788
−0.033
−0.333
−0.045
−0.459
0.261
2.614
−0.033
−0.3310
−0.060
−0.605
−0.180
−1.8011
0.212
2.126
−0.110
−1.1012
0.022
0.22
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Model: ΔExpt = b0 + b1ΔExpt–1 + εt
Coefficients
Standard Error
t-Statistic
p-value
Intercept
1.3304
0.0089
112.2849
< 0.0001
Lag-1
0.1817
0.0061
30.0125
< 0.0001
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Salest = b0 + b1 Sales t-1+ εt
| ||
| ||
|
| ||
| ||
|
Salest = 0.345 + 1.0 Salest-1
| ||
| ||
|
| ||
| ||
|
Quarter
Warranty
ExpenseChange in
Warranty
Expense
ytLagged Change in
Warranty Expense
yt-1Seasonal Lagged
Change in
Warranty
Expense
yt-4
2002.1103
2002.252
-51
2002.332
-20
-51
2002.468
+36
-20
2003.191
+23
+36
2003.244
-47
+23
-51
2003.330
-14
-47
-20
2003.460
+30
-14
+36
2004.177
+17
+30
+23
2004.238
-39
+17
-47
2004.329
-9
-39
-14
2004.453
+24
-9
+30
(Warranty expense)t = 74.1 - 2.7* t + et
R-squared = 16.2%
(14.37) (1.97)
yt = -0.7 - 0.07* yt-1 + 0.83* yt-4 + et
R-squared = 99.98%
(0.643) (0.0222) (0.0186)
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
11.73 =-0.7 - 0.07*24+ 0.83*17.The expected warranty expense is (53 + 11.73) = $64.73 million. (Study Session 3, LOS 13.d)
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Lagged Autocorrelations of the Log of Quarterly Theater Ticket Sales
Lag
Autocorrelation
Standard Error
t-Statistic
1
−0.0738
0.1667
−0.442712
−0.1047
0.1667
−0.628073
−0.0252
0.1667
−0.151174
0.5528
0.1667
3.31614
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
Lagged Autocorrelations of First Differences in the Log of Motorcycle Sales
Lag
Autocorrelation
Standard Error
t-Statistic
1
−0.0738
0.1667
−0.442712
−0.1047
0.1667
−0.628073
−0.0252
0.1667
−0.151174
0.5528
0.1667
3.31614
| ||
| ||
|
| ||
| ||
|
εt2 = 0.25 + 0.6ε2t-1 + µt, where ε = ε^
| ||
| ||
|
Time xt fitted values residuals 1 1 - - 2 -1 0.35 -1.35 3 2 1.45 0.55 4 -1 -0.2 -0.8 5 0 1.45 -1.45 6 2 0.9 1.1 7 0 -0.2 0.2 8 1 0.9 0.1 9 2 0.35 1.65
| ||
| ||
|
| ||
| ||
|
(Salest - Sales t-1) = 30 + 1.25 (Sales t-1 - Sales t-2) + 1.1 (Sales t-4 - Sales t-5) t=1,2,.. T
t Period Sales T 2000.2 $2,000 T-1 2000.1 $1,800 T-2 1999.4 $1,500 T-3 1999.3 $1,400 T-4 1999.2 $1,900 T-5 1999.1 $1,700
| ||
| ||
|
(Salest - Sales t-1)= 100 - 1.5 (Sales t-1 - Sales t-2) + 1.2 (Sales t-4 - Sales t-5) t=1,2,.. Tand Sales for the periods 1999.1 through 2000.2:
t Period Sales T 2000.2 $1,000 T-1 2000.1 $900 T-2 1999.4 $1,200 T-3 1999.3 $1,400 T-4 1999.2 $1,000 T-5 1999.1 $800
| ||
| ||
|
Change In Sales
Lagged Change
In Sales
Seasonal Lagged
Change In Sales
Quarter
Sales
Y
Y + (−1)
Y + (−4)
2006.1
182
2006.2
74
−108
2006.3
78
4
−108
2006.4
242
164
4
2007.1
194
−48
164
2007.2
79
−115
−48
−108
2007.3
90
11
−115
4
2007.4
260
170
11
w
| ||
| ||
|
| ||
| ||
|
Coefficients
Intercept
−6.032
Lag 1
0.017
Lag 4
0.983
Based on the model, expected sales in the first quarter of 2008 will be closest to:
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
| ||
| ||
|
欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) | Powered by Discuz! 7.2 |