Linear Mixed Effects Model (Random Intercept and Slopes)
data cd4;
infile 'cd4.dat';
input id group age sex week logcd4;
****************************************************************;
* Create new variable combining groups 1, 2, and 3 *;
****************************************************************;
trt=0;
if (group=4) then trt=1;
week_16=max(week - 16, 0);
w16=week_16 - week;
title1 Mixed Effects Model for log CD4;
title2 AIDS Clinical Trial Group (ACTG) 193A Study;
proc mixed method=reml noclprint=10 covtest;
class id;
model logcd4 = week week_16 trt*week trt*week_16 / s chisq;
random intercept week week_16 / subject=id type=un g gcorr;
run;
<Selected Output>
title1 Mixed Effects Model for log CD4 adjusting for Age and Gender;
title2 AIDS Clinical Trial Group (ACTG) 193A Study;
ods output solutionr=bluptable;
proc mixed method=reml noclprint=10 covtest;
class id;
model logcd4 = age sex week week_16 trt*w16 / s chisq outpred=yhat;
random intercept week week_16 / subject=id type=un g gcorr solution;
run;
Linear Mixed Effects Model (Random Intercept and Slopes): Predicted Means
******************************************;
* Print first 60 observations only *;
******************************************;
proc print data=yhat (obs=60);
var id trt week logcd4 pred;
run;
Linear Mixed Effects Model (Random Intercept and Slopes): Empirical BLUPs
******************************************;
* Print first 60 observations only *;
******************************************;
proc print data=bluptable (obs=60);
run;
<Selected Output>
以下连接为CD4.DAT
http://www.biostat.harvard.edu/~fitzmaur/ala/cd4.txt
欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) | Powered by Discuz! 7.2 |