Board logo

标题: Reading 9: Common Probability Distributions - LOS a ~ Q6-9 [打印本页]

作者: mayanfang1    时间: 2009-1-9 10:14     标题: [2009] Session 3- Reading 9: Common Probability Distributions - LOS a ~ Q6-9

Q6. A dealer in a casino has rolled a five on a single die three times in a row. What is the probability of her rolling another five on the next roll, assuming it is a fair die?

A)   0.167.

B)   0.001.

C)   0.200.

Q7. The number of ships in the harbor is an example of what kind of variable?

A)   Discrete.

B)   Indiscrete.

C)   Continuous.

Q8. Which of the following is a discrete random variable?

A)     The realized return on a corporate bond.

B)     The amount of time between two successive stock trades.

C)     The number of advancing stocks in the DJIA in a day.

Q9. Which of the following statements about probability distributions is most accurate?

A)   A discrete uniform random variable has varying probabilities for each outcome that total to one.

B)   A binomial distribution counts the number of successes that occur in a fixed number of independent trials that have mutually exclusive (i.e. yes or no) outcomes.

C)   A continuous uniform distribution has a lower limit but no upper limit.


作者: mayanfang1    时间: 2009-1-9 10:14

答案和详解如下:

Q6. A dealer in a casino has rolled a five on a single die three times in a row. What is the probability of her rolling another five on the next roll, assuming it is a fair die?

A)   0.167.

B)   0.001.

C)   0.200.

Correct answer is A)

The probability of a value being rolled is 1/6 regardless of the previous value rolled.

Q7. The number of ships in the harbor is an example of what kind of variable?

A)   Discrete.

B)   Indiscrete.

C)   Continuous.

Correct answer is A)

A discrete variable is one that is represented by finite units.

Q8. Which of the following is a discrete random variable?

A)     The realized return on a corporate bond.

B)     The amount of time between two successive stock trades.

C)     The number of advancing stocks in the DJIA in a day.

Correct answer is C)

Since the DJIA consists of only 30 stocks, the answer associated with it would be a discrete random variable. Random variables measuring time, rates of return and weight will be continuous.

Q9. Which of the following statements about probability distributions is most accurate?

A)   A discrete uniform random variable has varying probabilities for each outcome that total to one.

B)   A binomial distribution counts the number of successes that occur in a fixed number of independent trials that have mutually exclusive (i.e. yes or no) outcomes.

C)   A continuous uniform distribution has a lower limit but no upper limit.

Correct answer is B)

Binomial probability distributions give the result of a single outcome and are used to study discrete random variables where you want to know the probability that an exact event will happen. A continuous uniform distribution has both an upper and a lower limit. A discrete uniform random variable has equal probabilities for each outcome.


作者: C-Rachel    时间: 2009-1-17 17:14

[em01]
作者: tofjing    时间: 2009-2-12 17:00

[em01]
作者: jacky_z    时间: 2009-2-14 15:45

Thanks
作者: zeraeh    时间: 2009-2-17 21:03

看答案,谢谢LZ
作者: dullmul    时间: 2009-3-24 11:47

answers
作者: hjl2000    时间: 2009-3-29 11:30

d
作者: connie198226    时间: 2009-4-3 01:03

ss
作者: kgbvvsscia    时间: 2009-4-6 20:26

谢谢了  哈哈
作者: hollyhe    时间: 2009-4-9 14:05

d
作者: gracesun    时间: 2009-4-11 07:08

 thanks
作者: fange520    时间: 2009-4-11 09:52

aacb
作者: big36999    时间: 2009-4-15 09:37

x
作者: amyamyamy    时间: 2009-4-19 13:54

thank you


作者: whoami158    时间: 2009-4-20 04:57

d
作者: giolu    时间: 2009-5-7 04:31

 ok
作者: ruyueyu    时间: 2009-5-7 16:29

thx
作者: jacky_lu79    时间: 2009-5-7 21:45

 thanks
作者: cynthia85    时间: 2009-5-8 23:22

sdf
作者: deqiang    时间: 2009-5-10 01:23

 ok
作者: Michjay    时间: 2009-5-11 00:12

a
作者: helloalan    时间: 2009-5-22 10:07

 aaab
作者: yangxi_sisi    时间: 2009-5-27 11:24

d
作者: 大狗狗    时间: 2009-5-31 16:53

K
作者: itispig2    时间: 2009-5-31 17:29

1
作者: valvet    时间: 2009-6-3 14:40

_acb
作者: yan_superman    时间: 2009-6-6 08:46

[em50] 
作者: kin009    时间: 2009-6-6 16:55

3
作者: rainbow117    时间: 2009-6-6 17:40

 xx
作者: kin009    时间: 2009-6-6 18:44

3
作者: albeecho    时间: 2009-6-7 13:14

Q1. Ryan McKeeler and Howard Hu, two junior statisticians, were discussing the relation between confidence intervals and hypothesis tests. During their discussion each of them made the following statement:

McKeeler: A confidence interval for a two-tailed hypothesis test is calculated as adding and subtracting the product of the standard error and the critical value from the sample statistic. For example, for a level of confidence of 68%, there is a 32% probability that the true population parameter is contained in the interval.

Hu: A 99% confidence interval uses a critical value associated with a given distribution at the 1% level of significance. A hypothesis test would compare a calculated test statistic to that critical value. As such, the confidence interval is the range for the test statistic within which a researcher would not reject the null hypothesis for a two-tailed hypothesis test about the value of the population mean of the random variable.

With respect to the statements made by McKeeler and Hu:

A)   both are correct.

B)   only one is correct.

C)   both are incorrect.

Correct answer is B)

McKeeler’s statement is incorrect. Specifically, for a level of confidence of say, 68%, there is a 68% probability that the true population parameter is contained in the interval. Therefore, there is a 32% probability that the true population parameter is not contained in the interval. Hu’s statement is correct.

Q2. Given a mean of 10% and a standard deviation of 14%, what is a 95% confidence interval for the return next year?

A)   -17.44% to 37.44%.

B)   -4.00% to 24.00%.

C)   -17.00% to 38.00%.

Correct answer is A)

10% +/- 14(1.96) = -17.44% to 37.44%.


作者: 流浪狗    时间: 2009-7-8 22:11

[em59]
作者: josephine_loh    时间: 2009-7-16 16:15

tq
作者: ch_914    时间: 2009-7-19 19:37

thanks
作者: smm911    时间: 2009-8-10 14:50

aabb
作者: ldstnhm    时间: 2009-8-19 21:28

ding
作者: huangyichun    时间: 2009-9-2 00:03

  thanks
作者: luodan0103    时间: 2009-9-2 17:29

thanks
作者: ohwow_my    时间: 2009-9-9 17:55

  thanks
作者: tobuketsu    时间: 2009-9-11 19:38     标题: re

 th
作者: doralin    时间: 2009-10-26 14:28

[em55]
作者: casey11    时间: 2009-10-27 16:57

11
作者: lqx1211    时间: 2009-10-28 23:35

 aa
作者: zhenkeyi    时间: 2009-10-29 06:48

这下应该对了……
作者: solitute    时间: 2009-10-30 15:40

thanks
作者: haisian    时间: 2009-11-8 09:54


作者: iloverere    时间: 2009-11-11 23:30

 re
作者: tin_wo    时间: 2009-11-12 08:38

tk
作者: ServantSaber    时间: 2009-11-12 09:03

huifu
作者: xmwang    时间: 2009-11-15 05:39

ding
作者: mellsa    时间: 2009-11-18 09:59

fff
作者: sibrinall    时间: 2009-11-18 20:37

[em55]
作者: cfamike    时间: 2009-11-23 07:04

adf
作者: terryshi    时间: 2009-12-1 23:51

thanks
作者: Vicky724    时间: 2009-12-15 06:20

 w  xiang kan

作者: jerrywang0    时间: 2010-4-14 11:30

qqq
作者: shuru1207    时间: 2010-5-5 06:20

thnx
作者: chenxu200312    时间: 2010-5-23 03:22

d
作者: ichbinlea    时间: 2010-5-23 15:21

[em01]
作者: annyyu    时间: 2010-5-24 14:42

re
作者: micynthia    时间: 2010-5-29 15:42

ww
作者: MLI123    时间: 2010-5-30 21:55

/'/'/'

作者: creativepharos    时间: 2010-6-2 23:40

thanks
作者: xuantour90    时间: 2010-6-3 02:50

thanks
作者: kison    时间: 2010-8-26 19:58

xx
作者: Anyone2010    时间: 2010-9-3 14:57

ta
作者: leey52    时间: 2010-10-11 11:55

[em50]
作者: scofield1985    时间: 2010-10-13 22:05

d
作者: hahaxiao1978    时间: 2010-11-2 14:06

aacb
作者: seraphiris0116    时间: 2010-11-8 15:44

thanks
作者: jingh1981    时间: 2010-11-20 04:52

thanks
作者: leoniegolly    时间: 2010-11-21 20:19

3x
作者: hnzjbenson    时间: 2010-12-1 16:58

 s
作者: danforth    时间: 2010-12-3 15:44

d
作者: gabrielloh    时间: 2011-1-28 08:46

Thanks.
作者: gigifresh    时间: 2011-2-12 11:59

谢谢哦


作者: 祈愿修神    时间: 2011-4-1 16:50

3
作者: 风吹竹面    时间: 2011-4-14 05:01

 yhanks
作者: flyspiderman    时间: 2011-4-17 20:04

thx
作者: FOREVER396    时间: 2011-4-19 19:52

have a look




欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) Powered by Discuz! 7.2