标题: Reading 9: Common Probability Distributions - LOS h, (Part [打印本页]
作者: mayanfang1 时间: 2009-1-9 10:33 标题: [2009] Session 3- Reading 9: Common Probability Distributions - LOS h, (Part
Q4. The owner of a bowling alley determined that the average weight for a bowling ball is 12 pounds with a standard deviation of 1.5 pounds. A ball denoted “heavy” should be one of the top 2% based on weight. Assuming the weights of bowling balls are normally distributed, at what weight (in pounds) should the “heavy” designation be used?
A) 15.08 pounds.
B) 14.22 pounds.
C) 14.00 pounds.
Q5. Which of the following represents the mean, standard deviation, and variance of a standard normal distribution?
A) 0, 1, 1.
B) 1, 1, 1.
C) 1, 2, 4.
Q6. Standardizing a normally distributed random variable requires the:
A) mean, variance and skewness.
B) mean and the standard deviation.
C) natural logarithm of X.
作者: mayanfang1 时间: 2009-1-9 10:34
答案和详解如下:
Q4. The owner of a bowling alley determined that the average weight for a bowling ball is 12 pounds with a standard deviation of 1.5 pounds. A ball denoted “heavy” should be one of the top 2% based on weight. Assuming the weights of bowling balls are normally distributed, at what weight (in pounds) should the “heavy” designation be used?
A) 15.08 pounds.
B) 14.22 pounds.
C) 14.00 pounds.
Correct answer is A)
The first step is to determine the z-score that corresponds to the top 2%. Since we are only concerned with the top 2%, we only consider the right hand of the normal distribution. Looking on the cumulative table for 0.9800 (or close to it) we find a z-score of 2.05. To answer the question, we need to use the normal distribution given: 98 percentile = sample mean + (z-score)(standard deviation) = 12 + 2.05(1.5) = 15.08.
Q5. Which of the following represents the mean, standard deviation, and variance of a standard normal distribution?
A) 0, 1, 1.
B) 1, 1, 1.
C) 1, 2, 4.
Correct answer is A)
By definition, for the standard normal distribution, the mean, standard deviation, and variance are 0, 1, 1.
Q6. Standardizing a normally distributed random variable requires the:
A) mean, variance and skewness.
B) mean and the standard deviation.
C) natural logarithm of X.
Correct answer is B)
All that is necessary is to know the mean and the variance. Subtracting the mean from the random variable and dividing the difference by the standard deviation standardizes the variable.
作者: gracesun 时间: 2009-1-17 11:10
thank you so much
作者: C-Rachel 时间: 2009-1-17 17:28
[em09]
作者: jacky_z 时间: 2009-2-14 22:48
Thanks
作者: zeraeh 时间: 2009-2-17 21:19
看答案,谢谢LZ
作者: hjl2000 时间: 2009-3-29 12:58
d
作者: connie198226 时间: 2009-4-3 01:13
ss
作者: kgbvvsscia 时间: 2009-4-6 21:47
谢谢了 哈哈
作者: hollyhe 时间: 2009-4-10 12:36
d
作者: fange520 时间: 2009-4-12 19:05
aab
作者: amyamyamy 时间: 2009-4-20 22:36
thank you
作者: big36999 时间: 2009-4-22 04:02
x
作者: dullmul 时间: 2009-5-2 08:09
thx
作者: giolu 时间: 2009-5-7 03:20
ok
作者: ruyueyu 时间: 2009-5-7 17:07
thx
作者: ruyueyu 时间: 2009-5-7 17:07
thx
作者: jacky_lu79 时间: 2009-5-8 08:15
thanks
作者: deqiang 时间: 2009-5-11 00:14
ok
作者: helloalan 时间: 2009-5-21 15:22
ab
作者: itispig2 时间: 2009-5-31 18:30
1
作者: coffeebeanmm 时间: 2009-6-1 20:10
a,a,a
作者: simonzhong1980 时间: 2009-6-2 08:59
goog
作者: plee1986 时间: 2009-6-2 15:23
tx
作者: valvet 时间: 2009-6-3 15:45
aab
作者: yan_superman 时间: 2009-6-6 07:11
[em50]
作者: kin009 时间: 2009-6-6 18:48
3
作者: cracy2749 时间: 2009-6-26 23:21
AAB
作者: Amoon发飙了 时间: 2009-6-26 23:49
thx
作者: 流浪狗 时间: 2009-7-4 21:26
thanks
作者: ch_914 时间: 2009-7-20 19:28
THANKS
作者: jzwx 时间: 2009-7-26 11:22
thanks
作者: josephine_loh 时间: 2009-7-29 09:41
tq
作者: zacharyxu 时间: 2009-8-16 00:01 标题: thanks
thanks
作者: huangyichun 时间: 2009-9-2 00:09
thanks
作者: luodan0103 时间: 2009-9-2 17:19
thanks
作者: ohwow_my 时间: 2009-9-9 17:56
thanks
作者: tobuketsu 时间: 2009-9-10 23:02 标题: re
th
作者: zaestau 时间: 2009-9-13 23:42
cc
作者: loyalvirgo 时间: 2009-10-7 22:18
thx
作者: garmun 时间: 2009-10-13 22:31
tq
作者: htpeng 时间: 2009-10-21 01:39
b
作者: doralin 时间: 2009-10-26 11:27
[em55]
作者: casey11 时间: 2009-10-27 17:07
11
作者: lqx1211 时间: 2009-10-30 22:46
aa
作者: solitute 时间: 2009-10-31 14:27
thanks
作者: haisian 时间: 2009-11-8 10:18
谢谢
作者: tin_wo 时间: 2009-11-12 09:23
tk
作者: xmwang 时间: 2009-11-15 05:37
h
作者: shjens 时间: 2009-11-18 01:26 标题: sadf
ksks
作者: mellsa 时间: 2009-11-18 10:12
fff
作者: sibrinall 时间: 2009-11-18 21:54
thx
作者: yangxi_sisi 时间: 2009-11-29 10:50
d
作者: jrxx99 时间: 2009-12-10 08:33
昭昭昭昭昭昭昭昭昭昭昭昭昭昭昭昭
作者: Vicky724 时间: 2009-12-15 06:29
w x iang akn
作者: jerrywang0 时间: 2010-4-14 14:38
QQQ
作者: toyru 时间: 2010-4-18 19:39
THANKS
作者: bobbyt2000 时间: 2010-4-25 19:15
see
作者: shuru1207 时间: 2010-5-7 02:33
thnx
作者: chenxu200312 时间: 2010-5-23 03:18
d
作者: ichbinlea 时间: 2010-5-23 16:01
[em09]
作者: annyyu 时间: 2010-5-24 14:09
re
作者: xuantour90 时间: 2010-6-3 02:43
thanks
作者: creativepharos 时间: 2010-6-3 11:29
thank you
作者: kison 时间: 2010-8-26 20:09
xx
作者: Anyone2010 时间: 2010-9-3 15:13
ta
作者: ethanloo 时间: 2010-9-9 10:33 标题: thank you
thank you
作者: Foon 时间: 2010-9-16 10:57
thanks
作者: winstoncxy44 时间: 2010-9-17 01:48
thanks
作者: x109airfighter 时间: 2010-9-20 09:20
必须回复!
作者: lovemom 时间: 2010-9-21 04:54
THX
作者: scofield1985 时间: 2010-10-13 22:20
d
作者: seraphiris0116 时间: 2010-11-7 22:37
thanks
作者: jingh1981 时间: 2010-11-20 04:55
thank you
作者: leoniegolly 时间: 2010-11-21 19:31
3x
作者: spidermanyan 时间: 2010-11-29 20:30
啊啊啊啊啊啊啊啊啊啊啊啊
作者: yklee558 时间: 2011-1-23 11:56
thks
作者: yuanzhui 时间: 2011-1-24 13:42
ding
作者: gabrielloh 时间: 2011-1-26 08:33
thx
作者: 祈愿修神 时间: 2011-4-1 17:35
3
作者: dll677 时间: 2011-4-3 11:19
dd
作者: billxuyao 时间: 2011-4-5 12:41
thanks
作者: 风吹竹面 时间: 2011-4-14 01:11
谢谢
作者: kepei7763 时间: 2011-5-28 07:03
thx
作者: FOREVER396 时间: 2011-6-19 17:05
HAVE A LOOK
作者: unknown 时间: 2011-6-25 11:52
thanks for sharing
作者: 小鱼儿崽子 时间: 2011-7-28 10:56
回复看答案~~
作者: shannyzheng 时间: 2011-8-9 10:33
thanks u !!!
作者: shing1314 时间: 2011-8-24 18:33
thanks for sharing
欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) |
Powered by Discuz! 7.2 |