Board logo

标题: Reading 54: Term Structure and Volatility of Interest Rates [打印本页]

作者: youzizhang    时间: 2009-3-18 16:53     标题: [2009] Session 14-Reading 54: Term Structure and Volatility of Interest Rates

 

LOS g: Compute and interpret yield volatility.

Q1. What is the annualized yield volatility if the daily yield volatility is equal to 0.6754%?

A)   10.68%.

B)   9.73%.

C)   168.85%.

 

Q2. Suppose that the sample mean of 25 daily yield changes is 0.08%, and the sum of the squared deviations from the mean is 9.6464. Which of the following is the closest to the daily yield volatility?

A)   0.6340%.

B)   0.4019%.

C)   0.3859%.

 

Q3. Yield volatility is a measure of the:

A)   relative daily yield changes over a period.

B)   absolute daily yield changes over a period.

C)   difference in the beginning interest rate and ending interest rate over a period.

 

Q4. For a given three-day period, the interest rates are 4.0%, 4.1%, and 4.0%. What is the yield volatility over this period?

A)   0.0577.

B)   0.0000.

C)   0.0349.

 

Q5. Which of the following is the most important consideration in determining the number of observations to use to estimate the yield volatility?

A)   The appropriate time horizon.

B)   The liquidity of the underlying instrument.

C)   The shape of the yield curve.

 

Q6. Which of the following is a major consideration when the daily yield volatility is annualized?

A)   The appropriate day multiple to use for a year.

B)   The appropriate time horizon.

C)   The shape of the yield curve.


作者: youzizhang    时间: 2009-3-18 16:55     标题: [2009] Session 14-Reading 54: Term Structure and Volatility of Interest Rates

 

LOS g: Compute and interpret yield volatility. fficeffice" />

Q1. What is the annualized yield volatility if the daily yield volatility is equal to 0.6754%?

A)   10.68%.

B)   9.73%.

C)   168.85%.

Correct answer is A)

Annualized yield volatility = σ × (# of trading days in a year)

Where σ = the daily yield volatility.

So,

Annualized yield volatility = (0.6754%) (250) = 10.68%

 

Q2. Suppose that the sample mean of 25 daily yield changes is 0.08%, and the sum of the squared deviations from the mean is 9.6464. Which of the following is the closest to the daily yield volatility?

A)   0.6340%.

B)   0.4019%.

C)   0.3859%.

Correct answer is A)

Daily yield volatility is the standard deviation of the daily yield changes. The variance is obtained by dividing the sum of the squared deviations by the number of observations minus one. Therefore, we have:

Variance = 9.6464/(25 – 1) = 0.4019

Standard deviation = yield volatility = (0.4019)? = 0.6340%

 

Q3. Yield volatility is a measure of the:

A)   relative daily yield changes over a period.

B)   absolute daily yield changes over a period.

C)   difference in the beginning interest rate and ending interest rate over a period.

Correct answer is A)

Yield volatility measures the relative daily yield changes over some period. To see why this might be important, note that an interest rate series could begin and end at the same point but have very large changes during the period. Such information would likely be of value to the bond analyst.

 

Q4. For a given three-day period, the interest rates are 4.0%, 4.1%, and 4.0%. What is the yield volatility over this period?

A)   0.0577.

B)   0.0000.

C)   0.0349.

Correct answer is C)

The yield volatility is the standard deviation of the natural logarithms of the two ratios (4.1/4.0) and (4.0/4.1) which are 0.0247 and –0.0247 respectively. Since the mean of these two numbers is zero, the standard deviation is simply {[(0.0247)2 +(-0.0247)2]/(2-1)}0.5=0.0349.

 

Q5. Which of the following is the most important consideration in determining the number of observations to use to estimate the yield volatility?

A)   The appropriate time horizon.

B)   The liquidity of the underlying instrument.

C)   The shape of the yield curve.

Correct answer is A)

The appropriate number of days depends on the investment horizon of the user of the volatility measurement, e.g., day traders versus pension fund managers.

 

Q6. Which of the following is a major consideration when the daily yield volatility is annualized?

A)   The appropriate day multiple to use for a year.

B)   The appropriate time horizon.

C)   The shape of the yield curve.

Correct answer is A)

Typically, the number of trading days per year is used, i.e., 250 days.


作者: cyyap1011    时间: 2009-3-19 19:17

 thanks
作者: parkers    时间: 2009-3-20 13:51

thx
作者: shij    时间: 2009-3-26 14:48

3x
作者: liqingguo    时间: 2009-3-27 14:38

aaca
作者: legendstar    时间: 2009-4-14 11:23

thx
作者: yy21    时间: 2009-4-23 10:57     标题: 哈哈呵呵哈哈哈哈哈哈哈哈哈哈哈

 好
作者: harbuzi    时间: 2009-4-30 23:51

fd
作者: back20092009    时间: 2009-5-2 15:34

good
作者: dandinghe4748    时间: 2009-5-6 14:11     标题: 回复:(youzizhang)[2009] Session 14-Reading 54: ...

3x
作者: hkgee    时间: 2009-5-11 13:55

thanks!
作者: leeyaoxee    时间: 2009-5-15 10:37     标题: 回复:(youzizhang)[2009] Session 14-Reading 54: ...

thx
作者: lenny_chen    时间: 2009-5-22 14:06

X
作者: 杯中的鱼    时间: 2009-5-28 13:37

thx
作者: spf_855    时间: 2009-5-29 14:34

g
作者: blustxz    时间: 2009-5-31 13:06

1
作者: hartzhou    时间: 2009-6-1 15:28

感谢楼主


作者: puiventi    时间: 2009-6-3 17:28

re
作者: frondzx    时间: 2009-6-4 04:22

up
作者: shmilylt    时间: 2009-7-6 14:36     标题: dfdf

ddf
作者: lanmark38    时间: 2009-12-27 14:42

好好好好好
作者: yan_superman    时间: 2010-1-3 04:33

 thanks



作者: maxsimax    时间: 2010-2-27 18:28

thanks
作者: suodi    时间: 2010-5-14 12:42

[em50]
作者: selvie0818    时间: 2010-5-14 17:18

thanks
作者: powerhql    时间: 2010-5-22 20:42

Thanks for sharing it!


作者: 沙胖胖    时间: 2010-5-27 02:20

thanks
作者: LegendL    时间: 2010-5-30 10:54

3X
作者: jerry_young80    时间: 2010-5-30 12:00

re
作者: deqiang    时间: 2010-6-2 22:08

 Good.
作者: mma03    时间: 2011-3-11 04:09

thx
作者: rosemarie    时间: 2011-3-14 04:07

[em52]
作者: danforth    时间: 2011-6-2 09:58

dd




欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) Powered by Discuz! 7.2