Board logo

标题: Reading 62: Option Markets and Contracts Los i~Q1-3 [打印本页]

作者: youzizhang    时间: 2009-3-28 17:39     标题: [2009]Session17-Reading 62: Option Markets and Contracts Los i~Q1-3

 

LOS i: Illustrate how put-call parity for options on forwards (or futures) is established.

Q1. At time = 0, for a put option at exercise price (X) on a newly issued forward contact at FT (the forward price at time = 0), a portfolio with equal value could be constructed from being long in:

A)   the underlying asset, long a put at X, and short in a pure-discount risk-free bond that pays X – FT at option expiration.

B)   a risk-free pure-discount bond that pays FT – X at option expiration and long in a put at X.

C)   a call at X and long in a pure-discount risk-free bond that pays X – FT at option expiration.

 

Q2. Put-call parity for options on forward contracts at the initiation of the option where the forward price at that time (time=0) is FT, can best be expressed as:

A)   c0 + (X ? FT) / (1 + R)T = p0.

B)   c0 + X / (1 + R)T ? FT = p0.

C)   c0 ? (X ? FT) / (1 + R)T = p0.

 

Q3. Which of the following would have the same value at t = 0 as an at-the-money call option on a forward contract priced at FT (the forward price at time = 0)?

A)   A put option, long the underlying asset, and short a risk-free bond that pays X-FT at option expiration.

B)   A put option, long the underlying asset, and short a risk-free bond that matures at X at option expiration.

C)   A put option on the forward at exercise price (X).


作者: youzizhang    时间: 2009-3-28 17:42     标题: [2009]Session17-Reading 62: Option Markets and Contracts Los i~Q1-3

 

LOS i: Illustrate how put-call parity for options on forwards (or futures) is established. fficeffice" />

Q1. At time = 0, for a put option at exercise price (X) on a newly issued forward contact at FT (the forward price at time = 0), a portfolio with equal value could be constructed from being long in:

A)   the underlying asset, long a put at X, and short in a pure-discount risk-free bond that pays X – FT at option expiration.

B)   a risk-free pure-discount bond that pays FT – X at option expiration and long in a put at X.

C)   a call at X and long in a pure-discount risk-free bond that pays X – FT at option expiration.

Correct answer is C)

Utilizing the basic put/call parity equation, we're looking for a portfolio that is equal to the portfolio mentioned in the stem (a put option). The put-call parity equation is c0 + (X – FT) / (1+R)T = p0. Since (X – FT) / (1+R) is actually just the present value of the bond at expiration, the relationship can be simplified to long call + long bond = put.

 

Q2. Put-call parity for options on forward contracts at the initiation of the option where the forward price at that time (time=0) is FT, can best be expressed as:

A)   c0 + (X ? FT) / (1 + R)T = p0.

B)   c0 + X / (1 + R)T ? FT = p0.

C)   c0 ? (X ? FT) / (1 + R)T = p0.

Correct answer is A)

Put call parity for stocks (with discrete time discounting) is c0 + X / (1 + R)T ? S0 = p0. Noting that for the forward contract on an asset with no underlying cash flows, S0 = FT / (1 + R)T, and substituting, we get c0 + (X ? FT) / (1 + R)T = p0.

 

Q3. Which of the following would have the same value at t = 0 as an at-the-money call option on a forward contract priced at FT (the forward price at time = 0)?

A)   A put option, long the underlying asset, and short a risk-free bond that pays X-FT at option expiration.

B)   A put option, long the underlying asset, and short a risk-free bond that matures at X at option expiration.

C)   A put option on the forward at exercise price (X).

Correct answer is C)

Put-call parity for options on forward contracts is c0 + (X – FT) / (1+R)T = p0. Since X = FT for an at-the-money option, the put and the call have the same value for an at-the-money option.

 


作者: harbuzi    时间: 2009-4-29 19:30

jk
作者: dandinghe4748    时间: 2009-5-7 15:47     标题: 回复:(youzizhang)[2009]Session17-Reading 62: Op...

3x
作者: blazer11    时间: 2009-5-7 22:10

thank you
作者: hkgee    时间: 2009-5-8 13:49

thanks!
作者: saifudan    时间: 2009-5-10 20:50

thx
作者: yangxi_sisi    时间: 2009-5-14 09:02

d
作者: leeyaoxee    时间: 2009-5-21 13:51

thx
作者: CFA6077653    时间: 2009-5-21 14:18

311
作者: lenny_chen    时间: 2009-5-25 14:02

x
作者: 杯中的鱼    时间: 2009-6-1 13:27

thx

 


作者: blustxz    时间: 2009-6-1 18:29

1
作者: frondzx    时间: 2009-6-5 00:33

up
作者: yy21    时间: 2009-6-6 16:59     标题: 哈哈哈哈哈哈

哈哈哈哈哈

 


作者: shmilylt    时间: 2009-7-6 15:45

sdfdf
作者: shmilylt    时间: 2009-7-6 15:50

dfsf
作者: hartzhou    时间: 2009-9-18 14:20

thanks
作者: kelvinzz    时间: 2009-10-2 11:51

thanks
作者: huey    时间: 2009-11-3 19:19

THKS
作者: ayumioscar    时间: 2009-11-10 17:18

1
作者: jrxx999    时间: 2009-12-25 09:24

踩踩踩踩踩踩踩踩踩踩
作者: maxsimax    时间: 2010-2-28 17:11

thanks
作者: saint_zhu    时间: 2010-3-20 12:43

options
作者: cenkill    时间: 2010-3-25 11:23

a

 


作者: selvie0818    时间: 2010-5-13 13:45

thx
作者: suodi    时间: 2010-5-21 12:33

[em50]
作者: giolu    时间: 2010-5-25 04:30

thanks
作者: LegendL    时间: 2010-5-28 15:42

3X
作者: deqiang    时间: 2010-6-2 21:07

 Good stuff.

作者: 紫栀    时间: 2010-11-8 22:10

3x
作者: zhupp    时间: 2011-1-9 09:07

谢谢
作者: whoami158    时间: 2011-2-16 03:32

d
作者: mma03    时间: 2011-3-23 04:06

thx
作者: annyyu    时间: 2011-5-17 11:46

re
作者: elea0930    时间: 2011-6-3 19:08

cab




欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) Powered by Discuz! 7.2