返回列表 发帖
If a preferred stock that pays a $11.50 dividend is trading at $88.46, what is the market’s required rate of return for this security?
A)
11.76%.
B)
13.00%.
C)
7.69%.



From the formula: ValuePreferred Stock = D / kp, we derive kp = D / ValuePreferred Stock = 11.50 / 88.46 = 0.1300, or 13.00%.

TOP

A company has 6% preferred stock outstanding with a par value of $100. The required return on the preferred is 8%. What is the value of the preferred stock?
A)
$92.59.
B)
$100.00.
C)
$75.00.



The annual dividend on the preferred is $100(.06) = $6.00. The value of the preferred is $6.00/0.08 = $75.00.

TOP

What is the value of a preferred stock that is expected to pay a $5.00 annual dividend per year forever if similar risk securities are now yielding 8%?
A)
$40.00.
B)
$60.00.
C)
$62.50.



$5.00/0.08 = $62.50.

TOP

The preferred stock of the Delco Investments Company has a par value of $150 and a dividend of $11.50. A shareholder’s required return on this stock is 14%. What is the maximum price he would pay?
A)
$150.00.
B)
$54.76.
C)
$82.14.



Value of preferred = D / kp = $11.50 / 0.14 = $82.14

TOP


An analyst projects the following pro forma financial results for Magic Holdings, Inc., in the next year:
  • Sales of $1,000,000
  • Earnings of $200,000
  • Total assets of $750,000
  • Equity of $500,000
  • Dividend payout ratio of 62.5%
  • Shares outstanding of 50,000
  • Risk free interest rate of 7.5%
  • Expected market return of 13.0%
  • Stock Beta at 1.8

If the analyst assumes Magic Holdings, Inc. will produce a constant rate of dividend growth, the value of the stock is closest to:

A)
$19
B)
$104
C)
$44


Infinite period DDM: P0 = D1 / (ke – g)

D1

= (Earnings × Payout ratio) / average number of shares outstanding

= ($200,000 × 0.625) / 50,000 = $2.50.

ke

=  risk free rate + [beta × (expected market return – risk free rate)]



ke

=  7.5% + [1.8 × (13.0% - 7.5%)] = 17.4%.

g

=    (retention rate × ROE)

Retention = (1 – Payout) = 1 – 0.625 = 0.375.

ROE  = net income/equity

= 200,000/500,000 = 0.4

g

= 0.375 × 0.4 = 0.15.


P0 = D1 / (ke – g) = $2.50 / (0.174 - 0.15) = 104.17.

TOP

A firm pays an annual dividend of $1.15. The risk-free rate (RF) is 2.5%, and the total risk premium (RP) for the stock is 7%. What is the value of the stock, if the dividend is expected to remain constant?
A)
$25.00.
B)
$12.10.
C)
$16.03.



If the dividend remains constant, g = 0.
P = D1 / (k-g) = 1.15 / (0.095 - 0) = $12.10

TOP

Given the following estimated financial results, value the stock of FishnChips, Inc., using the infinite period dividend discount model (DDM).
  • Sales of $1,000,000.
  • Earnings of $150,000.
  • Total assets of $800,000.
  • Equity of $400,000.
  • Dividend payout ratio of 60.0%.
  • Average shares outstanding of 75,000.
  • Real risk free interest rate of 4.0%.
  • Expected inflation rate of 3.0%.
  • Expected market return of 13.0%.
  • Stock Beta at 2.1.

The per share value of FishnChips stock is approximately: (Note: Carry calculations out to at least 3 decimal places.)
A)
$26.86.
B)
Unable to calculate stock value because ke < g.
C)
$17.91.



Here, we are given all the inputs we need. Use the following steps to calculate the value of the stock:First, expand the infinite period DDM:
DDM formula: P0 = D1 / (ke – g)

D1

= (Earnings × Payout ratio) / average number of shares outstanding

= ($150,000 × 0.60) / 75,000 = $1.20

ke

= nominal risk free rate + [beta × (expected market return – nominal risk free rate)]

Note: Nominal risk-free rate

= (1 + real risk free rate) × (1 + expected inflation) – 1


= (1.04)×(1.03) – 1 = 0.0712, or 7.12%.


ke

= 7.12% + [2.1 × (13.0% − 7.12%)] = 0.19468

g

= (retention rate × ROE)

Retention

= (1 – Payout) = 1 – 0.60 = 0.40.


ROE

= (net income / sales)(sales / total assets)(total assets / equity)


= (150,000 / 1,000,000)(1,000,000 / 800,000)(800,000 / 400,000)


= 0.375


g

= 0.375 × 0.40 = 0.15


Then, calculate: P0 = D1 / (ke – g) = $1.20 / (0.19468 − 0.15) = 26.86.

TOP

Which of the following statements concerning security valuation is least accurate?
A)
A stock to be held for two years with a year-end dividend of $2.20 per share, an estimated value of $20.00 at the end of two years, and a required return of 15% is estimated to be worth $18.70 currently.
B)
A stock with a dividend last year of $3.25 per share, an expected dividend growth rate of 3.5%, and a required return of 12.5% is estimated to be worth $36.11.
C)
A stock with an expected dividend payout ratio of 30%, a required return of 8%, an expected dividend growth rate of 4%, and expected earnings of $4.15 per share is estimated to be worth $31.13 currently.


A stock with a dividend last year of $3.25 per share, an expected dividend growth rate of 3.5%, and a required return of 12.5% is estimated to be worth $37.33 using the DDM where Po = D1 / (k − g). We are given Do = $3.25, g = 3.5%, and k = 12.5%. What we need to find is D1 which equals Do × (1 + g) therefore D1 = $3.25 × 1.035 = $3.36 thus Po = 3.36 / (0.125 − 0.035) = $37.33.
In the answer choice where the stock value is $18.70, discounting the future cash flows back to the present gives the present value of the stock. the future cash flows are the dividend in year 1 plus the dividend and value of the stock in year 2 thus the equation becomes: Vo = 2.2 / 1.15 + (2.2 + 20) / 1.152 = $18.70
For the answer choice where the stock value is $31.13 use the DDM which is Po = D1 / (k − g). We are given k = 0.08, g = 0.04, and what we need to find is next year’s dividend or D1. D1 = Expected earnings × payout ratio = $4.15 × 0.3 = $1.245 thus Po = $1.245 / (0.08 − 0.04) = $31.13

TOP

Use the following information and the dividend discount model to find the value of GoFlower, Inc.’s, common stock.
  • Last year’s dividend was $3.10 per share.
  • The growth rate in dividends is estimated to be 10% forever.
  • The return on the market is expected to be 12%.
  • The risk-free rate is 4%.
  • GoFlower’s beta is 1.1.
A)
$34.95.
B)
$121.79.
C)
$26.64.



The required return for GoFlower is 0.04 + 1.1(0.12 – 0.04) = 0.128 or 12.8%. The expect dividend is ($3.10)(1.10) = $3.41. GoFlower’s common stock is then valued using the infinite period dividend discount model (DDM) as ($3.41) / (0.128 – 0.10) = $121.79.

TOP

What is the value of a stock that paid a $0.25 dividend last year, if dividends are expected to grow at a rate of 6% forever? Assume that the risk-free rate is 5%, the expected return on the market is 10%, and the stock's beta is 0.5.
A)
$16.67.
B)
$3.53.
C)
$17.67.



The discount rate is ke = 0.05 + 0.5(0.10 − 0.05) = 0.075. Use the infinite period dividend discount model to value the stock. The stock value = D1 / (ke – g) = (0.25 × 1.06) / (0.075 – 0.06) = $17.67.

TOP

返回列表