The average salary for a sample of 61 CFA charterholders with 10 years experience is $200,000, and the sample standard deviation is $80,000. Assume the population is normally distributed. Which of the following is a 99% confidence interval for the population mean salary of CFA charterholders with 10 years of experience?
If the distribution of the population is normal, but we don’t know the population variance, we can use the Student’s t-distribution to construct a confidence interval. Because there are 61 observations, the degrees of freedom are 60. From the student’s t table, we can determine that the reliability factor for tα/2, or t0.005, is 2.660. Then the 99% confidence interval is $200,000 ± 2.660($80,000 / √61) or $200,000 ± 2.660 × $10,243, or $200,000 ± $27,246.
|