A stock with a dividend last year of $3.25 per share, an expected dividend growth rate of 3.5%, and a required return of 12.5% is estimated to be worth $37.33 using the DDM where Po = D1 / (k ? g). We are given Do = $3.25, g = 3.5%, and k = 12.5%. What we need to find is D1 which equals Do × (1 + g) therefore D1 = $3.25 × 1.035 = $3.36 thus Po = 3.36 / (0.125 ? 0.035) = $37.33.
In the answer choice where the stock value is $18.70, discounting the future cash flows back to the present gives the present value of the stock. the future cash flows are the dividend in year 1 plus the dividend and value of the stock in year 2 thus the equation becomes: Vo = 2.2 / 1.15 + (2.2 + 20) / 1.152 = $18.70
For the answer choice where the stock value is $31.13 use the DDM which is Po = D1 / (k ? g). We are given k = 0.08, g = 0.04, and what we need to find is next year’s dividend or D1. D1 = Expected earnings × payout ratio = $4.15 × 0.3 = $1.245 thus Po = $1.245 / (0.08 ? 0.04) = $31.13