The owner of a bowling alley determined that the average weight for a bowling ball is 12 pounds with a standard deviation of 1.5 pounds. A ball denoted “heavy” should be one of the top 2% based on weight. Assuming the weights of bowling balls are normally distributed, at what weight (in pounds) should the “heavy” designation be used?
The first step is to determine the z-score that corresponds to the top 2%. Since we are only concerned with the top 2%, we only consider the right hand of the normal distribution. Looking on the cumulative table for 0.9800 (or close to it) we find a z-score of 2.05. To answer the question, we need to use the normal distribution given: 98 percentile = sample mean + (z-score)(standard deviation) = 12 + 2.05(1.5) = 15.08. |