返回列表 发帖

Reading 9: Common Probability Distributions LOS i习题精选

LOS i, (Part 1): Explain the key properties of the normal distribution.

A group of investors wants to be sure to always earn at least a 5% rate of return on their investments. They are looking at an investment that has a normally distributed probability distribution with an expected rate of return of 10% and a standard deviation of 5%. The probability of meeting or exceeding the investors' desired return in any given year is closest to:

A)
34%.
B)
98%.
C)
84%.



The mean is 10% and the standard deviation is 5%. You want to know the probability of a return 5% or better. 10% - 5% = 5% , so 5% is one standard deviation less than the mean. Thirty-four percent of the observations are between the mean and one standard deviation on the down side. Fifty percent of the observations are greater than the mean. So the probability of a return 5% or higher is 34% + 50% = 84%.

In a multivariate normal distribution, a correlation tells the:

A)

relationship between the means and variances of the variables.

B)

strength of the linear relationship between two of the variables.

C)

overall relationship between all the variables.



This is true by definition. The correlation only applies to two variables at a time.

TOP

A multivariate distribution:

A)

applies only to binomial distributions.

B)

specifies the probabilities associated with groups of random variables.

C)

gives multiple probabilities for the same outcome.




This is the definition of a multivariate distribution.

TOP

Which of the following would least likely be categorized as a multivariate distribution?

A)
The return of a stock and the return of the DJIA.
B)
The returns of the stocks in the DJIA.
C)
The days a stock traded and the days it did not trade.



The number of days a stock traded and did not trade describes only one random variable. Both of the other cases involve two or more random variables.

TOP

In addition to the usual parameters that describe a normal distribution, to completely describe 10 random variables, a multivariate normal distribution requires knowing the:

A)

45 correlations.

B)

overall correlation.

C)

10 correlations.




The number of correlations in a multivariate normal distribution of n variables is computed by the formula ((n) × (n-1)) / 2, in this case (10 × 9) / 2 = 45.

TOP

If X has a normal distribution with μ = 100 and σ = 5, then there is approximately a 90% probability that:

A)
P(93.4 < X < 106.7).
B)
P(91.8 < X < 108.3).
C)
P(90.2 < X < 109.8).



100 +/- 1.65 (5) = 91.75 to 108.25 or P ( P(91.75 < X < 108.25).

TOP

Which of the following statements about a normal distribution is least accurate?

A)
The distribution is completely described by its mean and variance.
B)
Approximately 34% of the observations fall within plus or minus one standard deviation of the mean.
C)
Kurtosis is equal to 3.



Approximately 68% of the observations fall within one standard deviation of the mean. Approximately 34% of the observations fall within the mean plus one standard deviation (or the mean minus one standard deviation).

TOP

A normal distribution can be completely described by its:

A)
skewness and kurtosis.
B)
mean and mode.
C)
mean and variance.



The normal distribution can be completely described by its mean and variance.

TOP

A normal distribution is completely described by its:

A)

mean, mode, and skewness.

B)

variance and mean.

C)

median and mode.



By definition, a normal distribution is completely described by its mean and variance.

TOP

The lower limit of a normal distribution is:

A)

negative infinity.

B)

negative one.

C)

zero.




By definition, a true normal distribution has a positive probability density function from negative to positive infinity.

TOP

返回列表