John Cupp, CFA, has several hundred clients. The values of the portfolios Cupp manages are approximately normally distributed with a mean of $800,000 and a standard deviation of $250,000. The probability of a randomly selected portfolio being in excess of $1,000,000 is:
Although the number of clients is discrete, since there are several hundred of them, we can treat them as continuous. The selected random value is standardized (its z-value is calculated) by subtracting the mean from the selected value and dividing by the standard deviation. This results in a z-value of (1,000,000 – 800,000) / 250,000 = 0.8. Looking up 0.8 in the z-value table yields 0.7881 as the probability that a random variable is to the left of the standardized value (i.e.less than $1,000,000). Accordingly, the probability of a random variable being to the right of the standardized value (i.e. greater than $1,000,000) is 1 – 0.7881 = 0.2119. |