An investor’s portfolio currently consists of 100% of stocks that have a mean return of 16.5% and an expected variance of 0.0324. The investor plans to diversify slightly by replacing 20% of her portfolio with U.S. Treasury bills that earn 4.75%. Assuming the investor diversifies, what are the expected return and expected standard deviation of the portfolio?
Since Treasury bills (T-bills) are considered risk-free, we know that the standard deviation of this asset and the correlation between T-bills and the other stocks is 0. Thus, we can calculate the portfolio expected return and standard deviation.
Step 1: Calculate the expected return Expected ReturnPortfolio = (wT-bills × ERT-bills) + (wStocks × ERStocks) = (0.20) × (0.0475) + (1.00-0.20) × (0.165) = 0.1415, or 14.15%.
Step 2: Calculate the expected standard deviation When combining a risk-free asset and a risky asset (or portfolio or risky assets), the equation for the standard deviation, σ1,2 = [(w12)(σ12) + (w22)(σ22) + 2w1w2 σ1 σ2ρ1,2]1/2, reduces to: σ1,2 = [(wStocks)(σStocks)] = 0.80 × 0.03241/2 = 0.14400, or 14.40%. (Remember to convert variance to standard deviation).
|