A researcher is testing the hypothesis that a population mean is equal to zero. From a sample with 64 observations, the researcher calculates a sample mean of -2.5 and a sample standard deviation of 8.0. At which levels of significance should the researcher reject the hypothesis?
| 1% significance |
5% significance |
10% significance |
A) |
Fail to reject |
Reject |
Reject | | |
B) |
Fail to reject |
Fail to reject |
Reject | | |
C) |
Reject |
Fail to reject |
Fail to reject | | |
This is a two-tailed test. With a sample size greater than 30, using a z-test is acceptable. The test statistic = = ?2.5. For a two-tailed z-test, the critical values are ±1.645 for a 10% significance level, ±1.96 for a 5% significance level, and ±2.58 for a 1% significance level. The researcher should reject the hypothesis at the 10% and 5% significance levels, but fail to reject the hypothesis at the 1% significance level.
Using Student's t-distribution, the critical values for 60 degrees of freedom (the closest available in a typical table) are ±1.671 for a 10% significance level, ±2.00 for a 5% significance level, and ±2.66 for a 1% significance level. The researcher should reject the hypothesis at the 10% and 5% significance levels, but fail to reject the hypothesis at the 1% significance level. |