Board logo

标题: Reading 11: Correlation and Regression - LOS h: Q5-8 [打印本页]

作者: mayanfang1    时间: 2009-1-7 14:14     标题: [2009] Session 3 - Reading 11: Correlation and Regression - LOS h: Q5-8

Q5. What is the lower limit of a 95% confidence interval for the predicted value of company sales (Y) given industry sales of $3,300?

A)   827.80.

B)   1,337.06.

C)   778.47.

Q6. What is the t-statistic for the slope of the regression line?

A)   2.9600.

B)   3.1820.

C)   7.7025.

Q7. A variable y is regressed against a single variable x across 28 observations. The value of the slope is 1.89, and the constant is 1.1. The mean value of x is 1.50, and the mean value of y is 3.94. The standard deviation of the x variable is 0.96, and the standard deviation of the y variable is 2.85. The regression sum of squares is 79.07, and the total sum of squares is 195.24. For an x value of 2.0, what is the 95% confidence interval for the y value?

A)   1.21 to 8.65.

B)   1.01 to 8.75.

C)   0.41 to 9.35.

Q8. Paul Frank is an analyst for the retail industry. He is examining the role of television viewing by teenagers on the sales of accessory stores. He gathered data and estimated the following regression of sales (in millions of dollars) on the number of hours watched by teenagers (TV, in hours per week):

Salest = 1.05 + 1.6 TVt

The predicted sales if television watching is 5 hours per week is:

A)    $2.65 million.

B)    $8.00 million.

C)    $9.05 million.


作者: mayanfang1    时间: 2009-1-7 14:15

答案和详解如下:

Q5. What is the lower limit of a 95% confidence interval for the predicted value of company sales (Y) given industry sales of $3,300?

A)   827.80.

B)   1,337.06.

C)   778.47.

Correct answer is C)

The predicted value is Ŷ = -94.88 + 0.2796 × 3,300 = 827.8.

The lower limit for a 95% confidence interval = Ŷ − tcsf = 827.8 − 3.182 × 15.5028 = 827.8 − 49.33 = 778.47 (Interim calculations below).

The critical value of tc at 95% confidence and 3 degrees of freedom is 3.182.

The standard error of the forecast, sf2= se2[1 + 1/n + (X − X)2/(n − 1)sx2], where

se2 = MSE = 200.17
n = 5
X = 3,300
X = 16,450/5 = 3,290
sx2 = Σ(Xi − X)2 / (n − 1) = 152,000 / 4 = 38,000

Substituting, sf2 = 200.17 × {1 + 1/5 + (3,300 − 3,290)2 / [(5 − 1) × 38,000]} = 240.335691.

sf = 15.5028

Q6. What is the t-statistic for the slope of the regression line?

A)   2.9600.

B)   3.1820.

C)   7.7025.

Correct answer is C)

Tb = (b1hat − b1) / sb1 = (0.2796 − 0) / 0.0363 = 7.7025.

Q7. A variable y is regressed against a single variable x across 28 observations. The value of the slope is 1.89, and the constant is 1.1. The mean value of x is 1.50, and the mean value of y is 3.94. The standard deviation of the x variable is 0.96, and the standard deviation of the y variable is 2.85. The regression sum of squares is 79.07, and the total sum of squares is 195.24. For an x value of 2.0, what is the 95% confidence interval for the y value?

A)   1.21 to 8.65.

B)   1.01 to 8.75.

C)   0.41 to 9.35.

Correct answer is C)

First the standard error of the estimate must be calculated—it is equal to the square root of the mean squared error, which is equal to the residual sum of squares divided by the number of observations minus 2. The residual sum of squares is equal to the difference between the total sum of squares and the regression sum of squares, which is 195.24 − 79.07 = 116.17. The standard error of the estimate is equal to (116.17 / 26)1/2 = 2.11. The standard deviation of the prediction is equal to the standard error of the estimate multiplied by {1 + 1/n + (X −X )2/[(n − 1)sx2]}1/2 = 2.11 × [1 + 1/28 + (2.0 − 1.5)2/(27 × 0.962)]1/2 = 2.17. The prediction value is 1.1 + (2.0 × 1.89) = 4.88. The t-value for 26 degrees of freedom is 2.056. The endpoints of the interval are 4.88 ± 2.056 × 2.17 = 0.41 and 9.35.

Q8. Paul Frank is an analyst for the retail industry. He is examining the role of television viewing by teenagers on the sales of accessory stores. He gathered data and estimated the following regression of sales (in millions of dollars) on the number of hours watched by teenagers (TV, in hours per week):

Salest = 1.05 + 1.6 TVt

The predicted sales if television watching is 5 hours per week is:

A)    $2.65 million.

B)    $8.00 million.

C)    $9.05 million.

Correct answer is C)

The predicted sales are: Sales = $1.05 + [$1.6 (5)] = $1.05 + $8.00 = $9.05 million.

 


作者: rettacui    时间: 2009-1-12 13:23

[em02]
作者: luck    时间: 2009-2-6 01:00

[em02]
作者: hitman1986    时间: 2009-3-7 23:58

1
作者: rex629    时间: 2009-3-15 03:29

 c
作者: cyyap1011    时间: 2009-3-17 17:55

 thanks
作者: lenny_chen    时间: 2009-3-23 15:54

x
作者: dandinghe4748    时间: 2009-4-19 07:46     标题: 回复:(mayanfang1)[2009] Session 3 - Reading 11:...

3x
作者: 杯中的鱼    时间: 2009-5-27 00:39

thx


作者: hkgee    时间: 2009-6-2 02:19

v
作者: saifudan    时间: 2009-6-3 07:07

 thx
作者: shmilylt    时间: 2009-7-23 14:07     标题: df

df
作者: twinsen1    时间: 2009-7-26 09:23

thanks
作者: maisherry    时间: 2009-10-24 17:24

thx
作者: jrxx999    时间: 2009-12-21 09:28

踩踩踩踩踩踩踩踩踩踩踩踩
作者: dynamic    时间: 2010-2-27 06:30

thks
作者: htpeng    时间: 2010-3-8 07:45

看看吗
作者: solitute    时间: 2010-4-6 09:54

thanks
作者: maxsimax    时间: 2010-4-14 14:25

thanks
作者: tomathome    时间: 2010-4-19 02:35

see
作者: tomathome    时间: 2010-4-19 03:03

see
作者: 沙胖胖    时间: 2010-5-13 07:33

thanks
作者: flyaway59    时间: 2010-5-13 21:44

thx
作者: xiamity    时间: 2010-5-18 17:28

thanks
作者: annyyu    时间: 2010-11-4 03:23

re
作者: rosemarie    时间: 2010-11-30 06:39

l
作者: ken_wangyang    时间: 2010-12-8 21:37

thx
作者: allenhsu    时间: 2011-1-31 16:26

222
作者: superchin    时间: 2011-2-13 16:39

THANKS
作者: elea0930    时间: 2011-5-24 22:12

cc
作者: danforth    时间: 2011-5-29 21:10

dd




欢迎光临 CFA论坛 (http://forum.theanalystspace.com/) Powered by Discuz! 7.2