上一主题:Quantitative Analysis【Reading 13】Sample
下一主题:Quantitative Analysis 【Reading 11】Sample
返回列表 发帖
Which of the following conditions will least likely affect the statistical inference about regression parameters by itself?
A)
Multicollinearity.
B)
Conditional heteroskedasticity.
C)
Unconditional heteroskedasticity.



Unconditional heteroskedasticity does not impact the statistical inference concerning the parameters.

TOP

George Smith, an analyst with Great Lakes Investments, has created a comprehensive report on the pharmaceutical industry at the request of his boss. The Great Lakes portfolio currently has a significant exposure to the pharmaceuticals industry through its large equity position in the top two pharmaceutical manufacturers. His boss requested that Smith determine a way to accurately forecast pharmaceutical sales in order for Great Lakes to identify further investment opportunities in the industry as well as to minimize their exposure to downturns in the market. Smith realized that there are many factors that could possibly have an impact on sales, and he must identify a method that can quantify their effect. Smith used a multiple regression analysis with five independent variables to predict industry sales. His goal is to not only identify relationships that are statistically significant, but economically significant as well. The assumptions of his model are fairly standard: a linear relationship exists between the dependent and independent variables, the independent variables are not random, and the expected value of the error term is zero.
Smith is confident with the results presented in his report. He has already done some hypothesis testing for statistical significance, including calculating a t-statistic and conducting a two-tailed test where the null hypothesis is that the regression coefficient is equal to zero versus the alternative that it is not. He feels that he has done a thorough job on the report and is ready to answer any questions posed by his boss.
However, Smith’s boss, John Sutter, is concerned that in his analysis, Smith has ignored several potential problems with the regression model that may affect his conclusions. He knows that when any of the basic assumptions of a regression model are violated, any results drawn for the model are questionable. He asks Smith to go back and carefully examine the effects of heteroskedasticity, multicollinearity, and serial correlation on his model. In specific, he wants Smith to make suggestions regarding how to detect these errors and to correct problems that he encounters. Suppose that there is evidence that the residual terms in the regression are positively correlated. The most likely effect on the statistical inferences drawn from the regressions results is for Smith to commit a:
A)
Type I error by incorrectly rejecting the null hypotheses that the regression parameters are equal to zero.
B)
Type II error by incorrectly failing to reject the null hypothesis that the regression parameters are equal to zero.
C)
Type I error by incorrectly failing to reject the null hypothesis that the regression parameters are equal to zero.



One problem with positive autocorrelation (also known as positive serial correlation) is that the standard errors of the parameter estimates will be too small and the t-statistics too large. This may lead Smith to incorrectly reject the null hypothesis that the parameters are equal to zero. In other words, Smith will incorrectly conclude that the parameters are statistically significant when in fact they are not. This is an example of a Type I error: incorrectly rejecting the null hypothesis when it should not be rejected. (Study Session 3, LOS 12.i)

Sutter has detected the presence of conditional heteroskedasticity in Smith’s report. This is evidence that:
A)
two or more of the independent variables are highly correlated with each other.
B)
the variance of the error term is correlated with the values of the independent variables.
C)
the error terms are correlated with each other.


Conditional heteroskedasticity exists when the variance of the error term is correlated with the values of the independent variables.
Multicollinearity, on the other hand, occurs when two or more of the independent variables are highly correlated with each other. Serial correlation exists when the error terms are correlated with each other. (Study Session 3, LOS 12.i)

Suppose there is evidence that the variance of the error term is correlated with the values of the independent variables. The most likely effect on the statistical inferences Smith can make from the regressions results is to commit a:
A)
Type II error by incorrectly failing to reject the null hypothesis that the regression parameters are equal to zero.
B)
Type I error by incorrectly rejecting the null hypotheses that the regression parameters are equal to zero.
C)
Type I error by incorrectly failing to reject the null hypothesis that the regression parameters are equal to zero.



One problem with heteroskedasticity is that the standard errors of the parameter estimates will be too small and the t-statistics too large. This will lead Smith to incorrectly reject the null hypothesis that the parameters are equal to zero. In other words, Smith will incorrectly conclude that the parameters are statistically significant when in fact they are not. This is an example of a Type I error: incorrectly rejecting the null hypothesis when it should not be rejected. (Study Session 3, LOS 12.i)

Which of the following is most likely to indicate that two or more of the independent variables, or linear combinations of independent variables, may be highly correlated with each other? Unless otherwise noted, significant and insignificant mean significantly different from zero and not significantly different from zero, respectively.
A)
The R2 is low, the F-statistic is insignificant and the Durbin-Watson statistic is significant.
B)
The R2 is high, the F-statistic is significant and the t-statistics on the individual slope coefficients are insignificant.
C)
The R2 is high, the F-statistic is significant and the t-statistics on the individual slope coefficients are significant.



Multicollinearity occurs when two or more of the independent variables, or linear combinations of independent variables, may be highly correlated with each other. In a classic effect of multicollinearity, the R2 is high and the F-statistic is significant, but the t-statistics on the individual slope coefficients are insignificant. (Study Session 3, LOS 12.j)

Suppose there is evidence that two or more of the independent variables, or linear combinations of independent variables, may be highly correlated with each other. The most likely effect on the statistical inferences Smith can make from the regression results is to commit a:
A)
Type I error by incorrectly rejecting the null hypothesis that the regression parameters are equal to zero.
B)
Type I error by incorrectly failing to reject the null hypothesis that the regression parameters are equal to zero.
C)
Type II error by incorrectly failing to reject the null hypothesis that the regression parameters are equal to zero.



One problem with multicollinearity is that the standard errors of the parameter estimates will be too large and the t-statistics too small. This will lead Smith to incorrectly fail to reject the null hypothesis that the parameters are statistically insignificant. In other words, Smith will incorrectly conclude that the parameters are not statistically significant when in fact they are. This is an example of a Type II error: incorrectly failing to reject the null hypothesis when it should be rejected. (Study Session 3, LOS 12.j)

Using the Durbin-Watson test statistic, Smith rejects the null hypothesis suggested by the test. This is evidence that:
A)
the error terms are correlated with each other.
B)
two or more of the independent variables are highly correlated with each other.
C)
the error term is normally distributed.



Serial correlation (also called autocorrelation) exists when the error terms are correlated with each other.
Multicollinearity, on the other hand, occurs when two or more of the independent variables are highly correlated with each other. One assumption of multiple regression is that the error term is normally distributed. (Study Session 3, LOS 12.i)

TOP

An analyst is estimating whether a fund’s excess return for a quarter is related to interest rates and last quarter’s excess return. The regression equation is found to have unconditional heteroskedasticity and serial correlation. Which of the following is most accurate? Parameter estimates will be:
A)
inaccurate and statistical inference about the parameters will not be valid.
B)
accurate but statistical inference about the parameters will not be valid.
C)
inaccurate but statistical inference about the parameters will be valid.



One of the independent variables is a lagged value of the dependent variable. This means that serial correlation will cause an inaccurate parameter estimate. Serial correlation always impacts the statistical inference about the parameters. Unconditional heteroskedasticity never impacts statistical inference or parameter accuracy.

TOP

During the course of a multiple regression analysis, an analyst has observed several items that she believes may render incorrect conclusions. For example, the coefficient standard errors are too small, although the estimated coefficients are accurate. She believes that these small standard error terms will result in the computed t-statistics being too big, resulting in too many Type I errors. The analyst has most likely observed which of the following assumption violations in her regression analysis?
A)
Multicollinearity.
B)
Homoskedasticity.
C)
Positive serial correlation.



Positive serial correlation is the condition where a positive regression error in one time period increases the likelihood of having a positive regression error in the next time period. The residual terms are correlated with one another, leading to coefficient error terms that are too small.

TOP

Which of the following is least likely a method of detecting serial correlations?
A)
The Durbin-Watson test.
B)
A scatter plot of the residuals over time.
C)
The Breusch-Pagan test.



The Breusch-Pagan test is a test of the heteroskedasticity and not of serial correlation

TOP

Which of the following statements regarding serial correlation that might be encountered in regression analysis is least accurate?
A)
Negative serial correlation causes a failure to reject the null hypothesis when it is actually false.
B)
Serial correlation occurs least often with time series data.
C)
Positive serial correlation typically has the same effect as heteroskedasticity.



Serial correlation, which is sometimes referred to as autocorrelation, occurs when the residual terms are correlated with one another, and is most frequently encountered with time series data.

TOP

Alex Wade, CFA, is analyzing the result of a regression analysis comparing the performance of gold stocks versus a broad equity market index. Wade believes that serial correlation may be present, and in order to prove his theory, should use which of the following methods to detect its presence?
A)
The Durbin-Watson statistic.
B)
The Breusch-Pagan test.
C)
The Hansen method.



The Durbin-Watson statistic is the most commonly used method for the detection of serial correlation, although residual plots can also be utilized. For a large sample size, DW ≈ 2(1-r), where r is the correlation coefficient between residuals from one period and those from a previous period. The DW statistic is then compared to a table of DW statistics that gives upper and lower critical values for various sample sizes, levels of significance and numbers of degrees of freedom to detect the presence or absence of serial correlation.

TOP

An analyst is estimating whether a fund’s excess return for a month is dependent on interest rates and whether the S&P 500 has increased or decreased during the month. The analyst collects 90 monthly return premia (the return on the fund minus the return on the S&P 500 benchmark), 90 monthly interest rates, and 90 monthly S&P 500 index returns from July 1999 to December 2006. After estimating the regression equation, the analyst finds that the correlation between the regressions residuals from one period and the residuals from the previous period is 0.145. Which of the following is most accurate at a 0.05 level of significance, based solely on the information provided? The analyst:
A)
cannot conclude that the regression exhibits either serial correlation or heteroskedasticity.
B)
can conclude that the regression exhibits serial correlation, but cannot conclude that the regression exhibits heteroskedasticity.
C)
can conclude that the regression exhibits heteroskedasticity, but cannot conclude that the regression exhibits serial correlation.



The Durbin-Watson statistic tests for serial correlation. For large samples, the Durbin-Watson statistic is equal to two multiplied by the difference between one and the sample correlation between the regressions residuals from one period and the residuals from the previous period, which is 2 × (1 − 0.145) = 1.71, which is higher than the upper Durbin-Watson value (with 2 variables and 90 observations) of 1.70. That means the hypothesis of no serial correlation cannot be rejected. There is no information on whether the regression exhibits heteroskedasticity.

TOP

An analyst is estimating whether a fund’s excess return for a month is dependent on interest rates and whether the S&P 500 has increased or decreased during the month. The analyst collects 90 monthly return premia (the return on the fund minus the return on the S&P 500 benchmark), 90 monthly interest rates, and 90 monthly S&P 500 index returns from July 1999 to December 2006. After estimating the regression equation, the analyst finds that the correlation between the regressions residuals from one period and the residuals from the previous period is 0.199. Which of the following is most accurate at a 0.05 level of significance, based solely on the information provided? The analyst:
A)
can conclude that the regression exhibits serial correlation, but cannot conclude that the regression exhibits multicollinearity.
B)
cannot conclude that the regression exhibits either serial correlation or multicollinearity.
C)
can conclude that the regression exhibits multicollinearity, but cannot conclude that the regression exhibits serial correlation.



The Durbin-Watson statistic tests for serial correlation. For large samples, the Durbin-Watson statistic is approximately equal to two multiplied by the difference between one and the sample correlation between the regressions residuals from one period and the residuals from the previous period, which is 2 × (1 − 0.199) = 1.602, which is less than the lower Durbin-Watson value (with 2 variables and 90 observations) of 1.61. That means the hypothesis of no serial correlation is rejected. There is no information on whether the regression exhibits multicollinearity.

TOP

Which of the following is least accurate regarding the Durbin-Watson (DW) test statistic?
A)
If the residuals have negative serial correlation, the DW statistic will be greater than 2.
B)
In tests of serial correlation using the DW statistic, there is a rejection region, a region over which the test can fail to reject the null, and an inconclusive region.
C)
If the residuals have positive serial correlation, the DW statistic will be greater than 2.



A value of 2 indicates no correlation, a value greater than 2 indicates negative correlation, and a value less than 2 indicates a positive correlation. There is a range of values in which the DW test is inconclusive.

TOP

返回列表
上一主题:Quantitative Analysis【Reading 13】Sample
下一主题:Quantitative Analysis 【Reading 11】Sample