The correct answer is D
Using the process of Hypothesis testing:
Step 1: State the Hypothesis. For 25% bonus level - Ho: m ≥ 30% Ha: m < 30%; For 50% bonus level - Ho: m ≥ 25% Ha: m < 25%.
Step 2: Select Appropriate Test Statistic. Here, we have a normally distributed population with a known variance (standard deviation is the square root of the variance) and a large sample size (greater than 30.) Thus, we will use the z-statistic.
Step 3: Specify the Level of Significance. α = 0.10.
Step 4: State the Decision Rule. This is a one-tailed test. The critical value for this question will be the z-statistic that corresponds to an α of 0.10, or an area to the left of the mean of 40% (with 50% to the right of the mean). Using the z-table (normal table), we determine that the appropriate critical value = -1.28 (Remember that we highly recommend that you have the “common” z-statistics memorized!) Thus, we will reject the null hypothesis if the calculated test statistic is less than -1.28.
Step 5: Calculate sample (test) statistics. Z (for 50% bonus) = (24.2 – 25) / (1.5 / √ 100) = ?5.333. Z (for 25% bonus) = (24.2 – 30) / (1.5 / √ 100) = ?38.67.
Step 6: Make a decision. Reject the null hypothesis for both the 25% and 50% bonus level because the test statistic is less than the critical value. Thus, Huffman should give Soberg a 50% bonus.
The other statements are false. The critical value of –1.28 is based on the significance level, and is thus the same for both the 50% and 25% bonus levels. |